Refractories and Industrial Ceramics

, Volume 56, Issue 4, pp 402–412 | Cite as

Analysis of Friction Materials and Technologies Developed to Make Brake Shoes for Heavily Loaded Brake Systems with Disks Made of a Ceramic Composite

  • A. S. Nilov
  • V. I. Kulik
  • A. P. Garshin

An analysis is made of the main trends in the production of friction materials and brake shoes based on ceramic materials (ceramic-matrix composites — CMCs) and the manufacture of heavy-duty automotive brake systems based on CMC brake disks having a SiC matrix reinforced with carbon fibers. For comparison, a detailed analysis is also made of several other materials and technologies used to make brake systems.


ceramic materials friction ceramic materials brake disks brake shoes ceramic composites (CMCs) composites with an SiC matrix polymer composites metal-matrix composites carbon-carbon composite materials (CCCMs) gas- and liquid-phase processes for CCCM and CMC production 


  1. 1.
    Handbook of Ceramic Composites (Ed.: Natottam P. Bansal), Kluver Academic Publishers, Boston (2005).Google Scholar
  2. 2.
    A. P. Garshin, V. I. Kulik, and A. S. Nilov, Braking friction materials based on fiber-reinforced composites with carbon and ceramic matrices,” Refractories and Industrial Ceramics, 49(5), 391 – 396 (2008).CrossRefGoogle Scholar
  3. 3.
  4. 4. Technology of ceramic brake shoes — origin and advantages.
  5. 5.
    M. Eriksson, F. Bergman, and S. Jacobson, “Surface characterization of brake pads after running under silent and squealing conditions,” Wear, 232, 163 – 167 (1999).CrossRefGoogle Scholar
  6. 6.
    D. Chan and G. W. Stachowiak, “Review of automotive brake friction materials,” J. Automobile Engineering, 218, 953 – 966 (2004).CrossRefGoogle Scholar
  7. 7.
    B. J. Blau, “Compositions, functions, and testing of friction brake materials and their additives,” Reports ORNL/TM-2001/64 (2001).Google Scholar
  8. 8.
    I. P. Miichenko, Polyamide Composite Materials Formed by Direct Pressing and Die Casting: Candidate Dissertation, MATI, Moscow (1986).Google Scholar
  9. 9.
    O. V. Khrenov, A. A. Dmitrovich, and A. V. Leshok, Metal-Ceramic Friction Materials [in Russian], Minsk (2011).Google Scholar
  10. 10.
    C. F. Tang and Y. Lu, J. Reinforced Plastics and Composites, “Combinatorial screening of ingredients for steel wool based semimetallic and aramid pulp based nonorganic brake materials,” 23(1), 51 – 63 (2004).Google Scholar
  11. 11.
  12. 12.
    R. Yun, S. G. Martynková, and Y. Lu., “Performance and evaluation of nonasbestos organic brake friction composites with SiC particles as an abrasive,” J. Compos. Mater., 45, No. 15, 1585 – 1593 (2011).CrossRefGoogle Scholar
  13. 13.
    G. H. Jang, K. H. Cho, S. B. Park, et al., “Tribological properties of C/C–SiC composites for brake discs,” Metals and Materials International, 16(1), 61 – 66 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Kermc, M. Kalin, and J. Vizintin, “Development and use of an apparatus for tribological evaluation of ceramic-based brake materials,” Wear, 259, 1079 – 1087 (2005).CrossRefGoogle Scholar
  15. 15.
    Polymers in the Friction Elements of Machines and Equipment: Handbook [in Russian] (Ed.: A. V. Chichinadze), Mashinostroenie, Moscow (1988).Google Scholar
  16. 16.
    V. M. Kryachek, “Friction composites: traditions and new solutions (review). Powder materials,” Powder Metallurgy and Metal Ceramics, 43(11/12), 581 – 592 (2004).CrossRefGoogle Scholar
  17. 17.
    I. M. Fedorchenko, V. M. Kryachek, and I. I. Panaioti, Modern Friction Materials [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  18. 18.
  19. 19.
    Z. Stadler, K. Krnel, and T. Kosmac, “Friction and wear of sintered metallic brake linings on a C/C–SiC composite brake disc,” Wear, 265(3/4), 278 – 285 (2008).CrossRefGoogle Scholar
  20. 20.
    Y.Wang and H.Wu., “Friction surface evolution of carbon fibre reinforced carbon/silicon carbide (Cf/C–SiC) composites,” J. European Ceramic Society, 30(15), 3187 – 3201 (2010).CrossRefGoogle Scholar
  21. 21.
    K. Krnel, Z. Stadler, and T. Kosmac, “Carbon/Carbon-Silicon-Carbide dual-matrix composites for brake discs,” Materials and Manufacturing Processes, 23, 587 – 590 (2008).CrossRefGoogle Scholar
  22. 22.
    V. V. Kulik, A. S. Nilov, A. P. Garshin, et al., “Study of tribological properties of composite materials with a silicon carbide matrix,” Refractories and Industrial Ceramics, 53(4), 259 – 268 (2012).CrossRefGoogle Scholar
  23. 23.
    V. I. Kulik, A. S. Nilov, and S. E. Demin, “Tribological studies of a ‘silicon-carbide composite — sintered metal-ceramic-based powders’ friction pair.” Tenth International Scientific-Technical Conference “New Materials and Technologies: Powder Metallurgy, Composite Materials, Protective Coatings, Welding.” Minsk, Belarus. Sept. 12 – 14, 2012. Belaruskaya Nauka, Minsk (2012), pp. 85 – 92.Google Scholar
  24. 24.
    U. S. Patent No. 7338987. Friction Material Composition and Friction Material Using the Same. M. Ono, T. Nagayoshi, M. Inoue, et al. Sub. 21.05.04, Publ. 04.03.08.Google Scholar
  25. 25.
    U. S. Patent No. 2010/0065389. Carbon Fiber Reinforced Carbon Matrix Composite for Brake Pad Back Plate. L. F. Gilroy, R. A. Wolf, and A. M. Morey. Sub. 16.09.09, Publ. 18.03.10.Google Scholar
  26. 26.
    V. N. Starchenko, M. V. Pavlenko, and V. V. Ovcharenko, “Study of the tribological characteristics of C–C friction com-posites,” Visnik SNU im. Volodimira Dalya, No. 6, 105 – 109 (2011).Google Scholar
  27. 27.
    Z. Stadler, “Carbonised-material-based brake pad for a C/C–SiC composite brake disc,” Materiali in Tehnologue,” 35(3/4), 205 – 208 (2001).Google Scholar
  28. 28.
    Zh. Li, P. Xiao, and X. Xiong, “Preparation and properties of C/C–SiC brake composites fabricated by warm compacted – in situ reaction,” International Journal of Minerals, Metallurgy and Materials, 17(4), 500 – 505 (2010).CrossRefGoogle Scholar
  29. 29.
    U. S. Patent No. 6265071. Brake Unit Including Brake Disc and Brake Lining. G. Gross, T. Haug, E. Näumann, et al. Sub. 15.09.98, Publ. 24.07.01.Google Scholar
  30. 30.
    U. S. Patent No. 7799250. Ceramic Materials for Friction Linings. R. Heuner, M. Bauer, and P. Winkermann. Sub. 16.02.06, Publ. 21.09.10.Google Scholar
  31. 31.
    EP Patent No. 1910245. Ceramic-Forming Polymer Material. W. J. Sherwood and L. A. Tarnowski. Sub. 21.06.06, Publ. 16.04.2008.Google Scholar
  32. 32.
    P. A. Storozhenko, A. M. Tsyrlin, S. P. Gubin, et al., “New oxygen-free pre-ceramic polymers – nanometallocarbosilanes and nanosized fillers—unique materials for increasing the strength and oxidation resistance of carbon-graphites and stabilizing high-strength and high-temperature ceramics,” Seriya: Kriticheskie Tekhnologii. Membrany, No. 4(28), 68 – 74 (2005).Google Scholar
  33. 33.
    N. Langhof, R. Voigt, H. Mucha, andW. Krenkel, “The effect of residual silicon in CMC brake pads on friction and wear,” Proc. 6th European Conference on Braking JEP 2010. Lille, France, 2010, pp. 71 – 78.Google Scholar
  34. 34.
    R. Naslain and F. Cristin, “Si-matrix composite materials for advanced jet engines,” MRS Bulletin 09, pp. 854 – 858 (2003).Google Scholar
  35. 35.
    W. Krenkel, “C/C–SiC composites for hot structures and advanced friction systems,” Ceramic Engineering and Science Proceedings (2003), 24 [4], pp. 583 – 592.Google Scholar
  36. 36.
    WO Patent No. 2008007411. Braking Band Composite Structure of a Brake Disc. R. S. Goller, B. Mauri, and M. Orlandi. Sub. 130.07.07, Publ. 17.01.08.Google Scholar
  37. 37.
    P. J. Blau, “Research on non-traditional materials for friction surfaces in heavy vehicle disc brakes,” Reports ORNVTM-2004/265 (2004).Google Scholar
  38. 38.…/EB2012-FM-01.pdf. “Friction films on C–SiC discs after dynamometer tests with different commercial brake pad,” W. Osterle, C. Deutsch, and I. Dorfel. Thesis of Eurobrake 2012 Conference. April 16 – 18, 2012. Dresden, Germany.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Baltic State Technical University “BOEHMEX,”St. PetersburgRussia
  2. 2.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations