Advertisement

Refractories and Industrial Ceramics

, Volume 55, Issue 4, pp 321–324 | Cite as

Polymorphic Transformations of Partly Stabilized ZrO2 at Broken Specimen Surfaces of Transformation-Strengthened Ceramic as a Result of Different Force and Thermal Action

  • V. V. Milyavskii
  • F. A. Akopov
  • E. S. Lukin
  • L. B. Borovkova
  • T. I. Borodina
  • G. E. Val’yano
  • N. A. Popova
  • V. S. Ziborov
Article
  • 24 Downloads

Results are provided for a study of high-density ceramic based on partly stabilized ZrO2 with a Y2O3 content of about 2.0 mol.%. Strength properties, structure, and phase composition are specified at the original basal surfaces and failure surfaces for ceramic specimens with force mechanical action, and also under low-temperature conditions (liquid nitrogen or helium). Results obtained are compared with known published data.

Keywords

partly stabilized ZrO2 (PSZD) x-ray phase analysis (XPA) coherent scattering field (CSF) atomic force microscopy scanning electron microscope elasticity moduli 

References

  1. 1.
    D. S. Rutman, Yu. S. Toropov, S. Yu. Pliner, et al., Highly Refractory Materials Based on Zirconium Dioxide [in Russian], Metallurgiya, Moscow (1985).Google Scholar
  2. 2.
    S. Yu. Pliner, D. S. Rutman, and A. A. Dabizhe, “High-strength ceramic of tetragonal zirconium dioxide,” Ogneupory, No. 9, 19 (1986).Google Scholar
  3. 3.
    E. S. Lukin, N. A. Popova, and N. I. Zdizhkova, “Features of preparing strong ceramic containing zirconium dioxide,” Ogneupory, No. 3, 5 (1991).Google Scholar
  4. 4.
    V. Ya. Shevchenko and S. M. Barinov, Engineering Ceramics [in Russian], Nauka, Moscow (1993).Google Scholar
  5. 5.
    T. Mashimo, A. Nakamura, M. Nishida, et al., “Anomalous shock compression behavior of yttria-doped tetragonal zirconia,” J. Appl. Phys., 77(10), 5069 – 5076 (1995).CrossRefGoogle Scholar
  6. 6.
    A. S. Savinykh, S. V. Razorenov, and G. I. Kanel’, “Deformation and failure of nanoceramic specimens of ZrO2 and Al2O3 in impact waves,” Coll. Physics of Extreme Conditions Substance-2002 (V. E. Fortov, V. P. Efrimov, et al., editors) [in Russian], Chernogolovka (2002).Google Scholar
  7. 7.
    D. E. Grady and T. Mashimo, “Shock and release wave properties of yttria-doped tetragonal and cubic zirconia,” J. Appl. Phys., 71(10), 4868 – 4874 (1992).CrossRefGoogle Scholar
  8. 8.
    V. V. Milyavskii, A. S. Savinykh, F. A. Akopov, et al., “Ceramics based on partly stabilized zirconium dioxide: synthesis, structure, and properties with dynamic loading,” TVT, 49(5), 707 (2011).Google Scholar
  9. 9.
    M. M. Shevel’ko, A. N. Peregudov, L. A. Yakovlev, and M. V. Korolevskii, “UZIS-GÉTU high precision ultrasonic wave velocity meter,” Proc. Nizhegorod Acoustic Scientific Session (S. N. Gurbatov, editor), TALAM, Nizhegorod (2002).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. V. Milyavskii
    • 1
  • F. A. Akopov
    • 1
  • E. S. Lukin
    • 2
  • L. B. Borovkova
    • 1
  • T. I. Borodina
    • 1
  • G. E. Val’yano
    • 1
  • N. A. Popova
    • 2
  • V. S. Ziborov
    • 1
  1. 1.RGBUN United Institute of High TemperatureRussian Academy of SciencesMoscowRussia
  2. 2.FGBOU VPO D. I. MendeleevRussian Chemical Technology UniversityMoscowRussia

Personalised recommendations