Refractories and Industrial Ceramics

, Volume 54, Issue 3, pp 203–209 | Cite as

Effect of CaF2 and MnO on Mold Powder Viscosity and Solidification During High-Speed Continuous Casting

  • A. R. Arefpour
  • A. Monshi
  • A. Saidi
  • T. Khayamian

Mold powders (MP) are used as raw materials in steel smelting production. In this work TiO2, Na2CO3, MnO, and ZnO are used in a MP composition in order to reduce the CaF2 content or to replace it; CaF2 is used in order to prepare powder, similar to the commercial powder used in steel pouring. Agroove viscometer is used to study MP specimen viscosity, and x-ray diffraction XRD and scanning electron microscopy SEM are used for analyzing specimen behavior during crystallization. Results of studies show that there is cuspidine in XRD diffraction patterns of some specimens. It is established that glassy phase white crystals of cuspidine formed make it possible the regulate MP viscosity required for forming a lubricating layer between mold walls and a steel ingot shell. With use of MnO in MP in an amount of about 4 wt.% (apart from MnO within a specimen chemical composition) alongside F in an amount of 2 wt.% low-fluorine MP specimens are prepared that may serve as a substitute for MP normally used in steel continuous casting.


continuous steel casting mold powder (MP) viscosity crystallization 


  1. 1.
    E. T. Turkdogan, Fundamentals of Steelmaking, The University Press, Cambridge (1996).Google Scholar
  2. 2.
    M. Mueller, W. Willenborg, K. Hilpert and L. Singheiser, “Structural dependence of alkali oxide activity in coal ash slag”, VII International Conference on molten slag, fluxes and salts, The South African Institute of Mining and Metallurgy (2004).Google Scholar
  3. 3.
    M. Nakamoto, J. Lee and T. Tanaka, “A model for estimation of molten silicate slag”, ISIJ Internat., 45(5), 651 – 656 (2005).CrossRefGoogle Scholar
  4. 4.
    S. Sridhar, “Estimation models for molten slag and alloy viscosities”, JOM, 46 – 48 (2005).Google Scholar
  5. 5.
    R. F. Brooks, A. T. Dinsdale and P. N. Quested, “The measurement of viscosity of alloys — a review of methods, data and models”, Meas. Sci. Technol., 16, 354 – 362 (2005).CrossRefGoogle Scholar
  6. 6.
    Q. Shu and J. Zhang, “Viscosity estimation for slags containing calcium fluoride”, J. Univ. Science and Technology Beijing, 12, 221 (2005.)Google Scholar
  7. 7.
    P. V. Riboud and M. Larrecq, “Fundamental study of the behavior of casting powders”, ISIJ Internat., 36, 522 – 525 (1996).CrossRefGoogle Scholar
  8. 8.
    C. Orrling, A. W. Cramb, A. Tilliander, et al, “Observations of the melting and solidification behavior of mold slags”, Iron and Steelmaker, 27(1), 53 – 63 (2000).Google Scholar
  9. 9.
    S. Feldbauer, I. Jimbo, A. Sharan, K. Shimizu, and Y. Kashiwaya, “Physical properties of mold slags that are relevant to clean steel manufacture”, Proc. 78th Steelmaking Conference, Nashville, Iron & Steel Society (1995).Google Scholar
  10. 10.
    K. C. Mills, S. Sridhar, A. S. Normanton and S. T. Mallaband, “Mould flux behavior in continuous casting”, The Brimacombe Memorial Symposium (2000).Google Scholar
  11. 11.
    P. V. Riboud, Y. Roux, L. D. Lucas, et al, “Improvement of continuous casting powders”, Fachber. Hüttenprax. Metallweiterverarb., 19, 859 (1981).Google Scholar
  12. 12.
    G. Urbain, F. Cambier, M. Deletter and M. R. Anseau, “Viscosity of silicate melts”, Trans. J. British Ceramics Society, 80, 139 (1981).Google Scholar
  13. 13.
    E. T. Turkdogan, “Physicochemical properties of molten slags and glasses”, Metals Society, 11 (1983).Google Scholar
  14. 14.
    S. Seetgraman, D. Sichen, and F. Z. Ji, “Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing”, Met. Mater. Trans. B, 31B, 105 (2000).CrossRefGoogle Scholar
  15. 15.
    L. Zhang and S. Jahanshahi, “Review and modeling of viscosity of silicate melts: Part I. Viscosity of binary and ternary silicates containing CaO, MgO and MnO”, Met. Mater. Trans. B, 31B, issue.1, 177 (1998).CrossRefGoogle Scholar
  16. 16.
    M. K. Koul, S. Sankaranarayanan, D. Apelian,W. L. McCauley, Mould Powder Technology, Press of Northeast University of Technology, (1988).Google Scholar
  17. 17.
    A. Morita, T. Omoto and Y. Iwamoto, United States Patent, No. US00641402B1, Molding powder for continuous casting of steel and a method for continuous casting of steel (2002).Google Scholar
  18. 18.
    W. En-fa, Y. Yin-dong, F. Chang-lin, et al., “Effect of carbon properties on melting Behavior of mold fluxes for continuous casting of steels”, J. Iron and Steel Res. International, 13(2), 22 – 26 (2006).CrossRefGoogle Scholar
  19. 19.
    G. Wen, S. Sridhar, P. Tang, et al., “Development of fluoridefree mold powders for peritectic steel slab casting”, ISIJ Internat., 47, 1117 – 1125 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. R. Arefpour
    • 1
  • A. Monshi
    • 1
  • A. Saidi
    • 1
  • T. Khayamian
    • 2
  1. 1.Department of Materials Engineering, Najaf Abad BranchIslamic Azad UniversityIsfahanIran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations