Skip to main content
Log in

Effect of CaF2 and MnO on Mold Powder Viscosity and Solidification During High-Speed Continuous Casting

  • Published:
Refractories and Industrial Ceramics Aims and scope

Mold powders (MP) are used as raw materials in steel smelting production. In this work TiO2, Na2CO3, MnO, and ZnO are used in a MP composition in order to reduce the CaF2 content or to replace it; CaF2 is used in order to prepare powder, similar to the commercial powder used in steel pouring. Agroove viscometer is used to study MP specimen viscosity, and x-ray diffraction XRD and scanning electron microscopy SEM are used for analyzing specimen behavior during crystallization. Results of studies show that there is cuspidine in XRD diffraction patterns of some specimens. It is established that glassy phase white crystals of cuspidine formed make it possible the regulate MP viscosity required for forming a lubricating layer between mold walls and a steel ingot shell. With use of MnO in MP in an amount of about 4 wt.% (apart from MnO within a specimen chemical composition) alongside F in an amount of 2 wt.% low-fluorine MP specimens are prepared that may serve as a substitute for MP normally used in steel continuous casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. T. Turkdogan, Fundamentals of Steelmaking, The University Press, Cambridge (1996).

    Google Scholar 

  2. M. Mueller, W. Willenborg, K. Hilpert and L. Singheiser, “Structural dependence of alkali oxide activity in coal ash slag”, VII International Conference on molten slag, fluxes and salts, The South African Institute of Mining and Metallurgy (2004).

  3. M. Nakamoto, J. Lee and T. Tanaka, “A model for estimation of molten silicate slag”, ISIJ Internat., 45(5), 651 – 656 (2005).

    Article  CAS  Google Scholar 

  4. S. Sridhar, “Estimation models for molten slag and alloy viscosities”, JOM, 46 – 48 (2005).

  5. R. F. Brooks, A. T. Dinsdale and P. N. Quested, “The measurement of viscosity of alloys — a review of methods, data and models”, Meas. Sci. Technol., 16, 354 – 362 (2005).

    Article  CAS  Google Scholar 

  6. Q. Shu and J. Zhang, “Viscosity estimation for slags containing calcium fluoride”, J. Univ. Science and Technology Beijing, 12, 221 (2005.)

    CAS  Google Scholar 

  7. P. V. Riboud and M. Larrecq, “Fundamental study of the behavior of casting powders”, ISIJ Internat., 36, 522 – 525 (1996).

    Article  Google Scholar 

  8. C. Orrling, A. W. Cramb, A. Tilliander, et al, “Observations of the melting and solidification behavior of mold slags”, Iron and Steelmaker, 27(1), 53 – 63 (2000).

    CAS  Google Scholar 

  9. S. Feldbauer, I. Jimbo, A. Sharan, K. Shimizu, and Y. Kashiwaya, “Physical properties of mold slags that are relevant to clean steel manufacture”, Proc. 78th Steelmaking Conference, Nashville, Iron & Steel Society (1995).

  10. K. C. Mills, S. Sridhar, A. S. Normanton and S. T. Mallaband, “Mould flux behavior in continuous casting”, The Brimacombe Memorial Symposium (2000).

  11. P. V. Riboud, Y. Roux, L. D. Lucas, et al, “Improvement of continuous casting powders”, Fachber. Hüttenprax. Metallweiterverarb., 19, 859 (1981).

    CAS  Google Scholar 

  12. G. Urbain, F. Cambier, M. Deletter and M. R. Anseau, “Viscosity of silicate melts”, Trans. J. British Ceramics Society, 80, 139 (1981).

    CAS  Google Scholar 

  13. E. T. Turkdogan, “Physicochemical properties of molten slags and glasses”, Metals Society, 11 (1983).

  14. S. Seetgraman, D. Sichen, and F. Z. Ji, “Estimation of viscosities of ternary silicate melts using the excess Gibbs energy of mixing”, Met. Mater. Trans. B, 31B, 105 (2000).

    Article  Google Scholar 

  15. L. Zhang and S. Jahanshahi, “Review and modeling of viscosity of silicate melts: Part I. Viscosity of binary and ternary silicates containing CaO, MgO and MnO”, Met. Mater. Trans. B, 31B, issue.1, 177 (1998).

    Article  Google Scholar 

  16. M. K. Koul, S. Sankaranarayanan, D. Apelian,W. L. McCauley, Mould Powder Technology, Press of Northeast University of Technology, (1988).

  17. A. Morita, T. Omoto and Y. Iwamoto, United States Patent, No. US00641402B1, Molding powder for continuous casting of steel and a method for continuous casting of steel (2002).

  18. W. En-fa, Y. Yin-dong, F. Chang-lin, et al., “Effect of carbon properties on melting Behavior of mold fluxes for continuous casting of steels”, J. Iron and Steel Res. International, 13(2), 22 – 26 (2006).

    Article  Google Scholar 

  19. G. Wen, S. Sridhar, P. Tang, et al., “Development of fluoridefree mold powders for peritectic steel slab casting”, ISIJ Internat., 47, 1117 – 1125 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Arefpour.

Additional information

Translated from Novye Ogneupory, No. 5, pp. 35 – 41, May, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arefpour, A.R., Monshi, A., Saidi, A. et al. Effect of CaF2 and MnO on Mold Powder Viscosity and Solidification During High-Speed Continuous Casting. Refract Ind Ceram 54, 203–209 (2013). https://doi.org/10.1007/s11148-013-9575-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-013-9575-x

Keywords

Navigation