Advertisement

Refractories and Industrial Ceramics

, Volume 53, Issue 3, pp 175–180 | Cite as

Porous structure and gas permeability of carbon-carbon base composite Gravimol in production process high-temperature stages

  • G. M. Butyrin
  • V. V. Konokotin
Article
  • 58 Downloads

Abstract

Results are provided for study of the porous structure and gas permeability of carbon-carbon base composite Gravimol for wing cowling of space shuttle Buran in the production process high-temperature stage. The nature of porosity redistribution is shown for the three main groups of material pores in the production process and their role in the final stage, i.e., borosiliciding.

Keywords

Gravimol composite carbon-carbon base (C–C-base) porous structure (PS) pore size distribution carbonization (Cb) stabilizing borosiliciding 

References

  1. 1.
    N. B. Vargaftik, Handbook for Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).Google Scholar
  2. 2.
    G. M Butyrin, A. I. Polozhikhin, L. A. Zimina, et al., “Use of isooctane during determination of open porosity of different carbon materials,” in: Coll. Work, Carbon Materials [in Russian], NIIgrafit, Moscow (1991).Google Scholar
  3. 3.
    G. M. Butyrin, Highly Porous Carbon Materials [in Russian], Khimiya, Moscow (1976).Google Scholar
  4. 4.
    G. G. Plachenov and S. T. Kolosentsev, Porosimetry [in Russian], Khmiya, Leningrad (1988).Google Scholar
  5. 5.
    G. M. Butyrin,“Pore structure of specimens prepared from graphite-containing refractory mixtures,” Refr. Ind. Ceram., 45(4), 250–254 (2004).CrossRefGoogle Scholar
  6. 6.
    G. M. Butyrin, L. A. Zimina, G. A. Lushnikov, et al., Stability of porous graphite structure MPG-6,” Khim. Tverdogo Tela, No. 6, 124–129 (1979).Google Scholar
  7. 7.
    A. N. Chernyavets, G. M. Butyrin, and I. A. Mironov, “Graphite of large cross sections for laser optics,” Tsvet. Met., No. 4, 107–112 (2000).Google Scholar
  8. 8.
    L. A. Zimina and G. M. Butyrin, “Study of the porous structure of large electrodes by mercury porosimetry,” Tsvet. Met., No. 8, 54–57 (1978).Google Scholar
  9. 9.
    J. F. Hewitt, Chemical and Physical Properties of Carbon (F. Walker, editor) [Russian translation], Mir, Moscow (1969).Google Scholar
  10. 10.
    G. M. Butyrin, “Procedure for determining gas permeability coefficient for carbon materials,” in: MI 4807-12986 [in Russian] NIIgrafit, Moscow (1986).Google Scholar
  11. 11.
    O. E. Konstatinova, Glossary. Carbon Materials [in Russian], FGUP NNIgrafit, Moscow (2010).Google Scholar
  12. 12.
    M. I. Rogailin, G. M. Butyrin, and E. F. Chalykh, “Classification of industrial graphite porous structure by specific volume and pore sizes,” Pore Structure and Properties of Materials. Proc. In tern. Symp. Prague, Sept. 18 – 21, 1973. Rep. Part III. Academia, Prague. (1974).Google Scholar
  13. 13.
    S. A. Kolesnikov, G. M. Butyrin, G. A. Kravetskii, et al., “Porous structure formation and physicomechanical properties of SiC–C carbon-ceramic composite materials. Part 2,” Refr. Ind. Ceram., 50(5), 376–382 (2009).CrossRefGoogle Scholar
  14. 14.
    A. V. Emyashev, V. I. Kostikov, S. A Kolesnikov, et al., “New combined composite material,” Proc. I Internat Aerospace Conf. “Man – Earth – Space,” 09.29 – 10.01.1992, Vol. 5, Materials and Technology for Production of Aerospace Systems, 172 – 180, Moscow (1995).Google Scholar
  15. 15.
    I. S. Baicher, Yu. A. Vasanov, V. M. Davydov, et al., Ibid, 172–180.Google Scholar
  16. 16.
    M. E. Kazakov, “Preparation of carbon-fiber materials based on viscose fiber,” in: Reinforcing Chemical Fibers for Composite Materials (G. I. Kudryavtsev, editor) [in Russian], Khimiya, Moscow (1972).Google Scholar
  17. 17.
    A. F. Kuteinikov, V. G. Nagornyi, D. K. Khakimova, G. M. Butyrin, et al. “Study of the effect of atomic-molecular porous structure on formation of the main properties of carbon materials,” Nauch. Tekhn. Otchet NIIgrafita, 1, No. 888 (1985).Google Scholar
  18. 18.
    S. A. Kolesnikov, G. M. Butyrin, and V. I. Kostikov, “Efficiency of compacting pyrolytic carbon with variation of carbon material structure porosity,” Khim. Tverd. Topliva, No. 5, 127–131 (1990).Google Scholar
  19. 19.
    M. I. Rogailin, I. L. Faberov, N. N. Kovalevskii, and G. M. Butyrin, “Change in the porous structure and permeability of artificial graphie during volumetric compaction with pyrocarbon,” Khim. Tverd. Topliva, No. 4, 132–139 (1971).Google Scholar
  20. 20.
    V. I. Kostikov, S. A. Kolesnikov, E. I. Kholodilova, et al., “Effect of structure on the properties of fibrous carbon materials,” Mech. Comp. Mater., No. 1, 423–427 (1981).Google Scholar
  21. 21.
    A. S. Tarabanov and V. I. Kostikov, Silicided Graphite [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  22. 22.
    S. A. Kolesnikov, E. I. Kholodilova, G. M. Butyrin, e tal., RF Inventor’s Cert 170161, Method for preparing silicided objects, Publ. 03.02.82.Google Scholar
  23. 23.
    K. K. Strelov, Structure and Properties of Refractories [in Russian], Metallurgiya, Moscow (1982).Google Scholar
  24. 24.
    V. I. Kostikov, “Features of conversion in special materials sciences,” Konversiya Mashinostroenie, No. 6, 52–57 (1997).Google Scholar
  25. 25.
    A. N. Shurshakov, L. N. Lutsenko, V. V. Konokotin, et al., “Heat-resistant high-strength materials grade Karbosil,” Konversiya Mashinostroenie, No. 11, 136–140 (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • G. M. Butyrin
    • 1
  • V. V. Konokotin
    • 1
  1. 1.OAO NIIgrafitMoscowRussia

Personalised recommendations