Refractories and Industrial Ceramics

, Volume 52, Issue 6, pp 424–430 | Cite as

Prospects for improving machining productivity of large ceramic objects for radio engineering purposes

  • E. I. Suzdal’tsev
  • D. V. Kharitonov
  • G. A. Kharakhonov
  • A. G. Épov
  • M. V. Nogarev

Contemporary machining methods for ceramic materials are analyzed. Laser, hydroabrasive and high-speed machining are considered. The possibility of using these methods for machining large complexly-shaped ceramic objects having a double surface curvature is evaluated.


glass ceramic machining laser machining hydroabrasive cutting high-speed machining 


  1. 1.
    E. A. Vorob’ev, “Machining of radioparent sharp-ended airborne equipment radomes,” Instrument, No. 10, 22 – 23 (1998).Google Scholar
  2. 2.
    A. G. Épov, A. G. Ustinov, G. A. Kharakhonov, et al., “Features of internal machining for complexly shaped objects RPO-50,” Proc. XVII Sci.-Tech. Conf. “Construction and technology for preparing objects from non-metallic materials,” Obninsk, Oct. (2004).Google Scholar
  3. 3.
    E. I. Suzdal’tsev, A. G. Épov, A. S. Khamitsaev, et al., “Study of the effect of machining regimes for glass ceramic objects in the system: lathe – object – tool – scheme,” Ogneupory. Tekhn. Keram., No. 7, 23 – 31 (2003).Google Scholar
  4. 4.
    Yu. E. Pivinskii and E. I. Suzdal’tsev, (Yu. E. Pivinskii, editor), Quartz ceramics and Refractories. Vol. 1. Theoretical Bases and Production Processes: Reference ed. [in Russian], Teploenergetik, Moscow (2008).Google Scholar
  5. 5.
    J. McGovern, Ceramic Radome Machining. Tooling Applications, Navy SBIR, No. 1 (2008). Topic N08 – 011 (http://
  6. 6.
    G. N. Zaitsev, N. V. Nikitov, and I. Kh. Buturovich, “Efficiency of plane ultrasonic grinding of ceramic with a diamond toll,” Steklo Keram., No. 4, 17 – 18 (1980).Google Scholar
  7. 7.
    G. N. Zaitsev and V. A. Ivanov, “Ultrasonic diamond grinding of ceramic plates,” Steklo Keram., No. 1, 21 – 22 (1987).Google Scholar
  8. 8.
    V. M. Kirillov, Inventor’s Cert. 1202171. Laser machining method for curvilinear surfaces and device for accomplishing it, Claim 03.28.84, Publ. 02.10.00.Google Scholar
  9. 9.
    K. Kirby, D. Engin, T. Jankiewicz, and J. W. Barber, US Patent 5665134, Lazer machining of glass ceramic materials. 09.09.97.Google Scholar
  10. 10.
    E. I. Suzdal’tsev,, D. V. Kharitonov, G. K. Rogov, et al., RF Patent 2312764 Device for machining large complexly shaped ceramic objects, Claim 04.03.06, Publ. 12.20.07, Byul. No. 35.Google Scholar
  11. 11.
    K. Wittington and V. Vlasov, “High-speed machining,” SAPR i Grafika, No. 11, 107 – 113 (2002).Google Scholar
  12. 12.
    A. A. Tarasov, V. N. Krutov, V. A. Treyal’, et al., “High-speed machining — a tool for increasing production efficiency,” Instrument Tekhnol, N0. 29 (23), 112 – 114 (2010).Google Scholar
  13. 13.
    R. Pasko, “High-speed machining (HSM) — the effect way of modern cutting,” Internat. Workshop CA Systems and Technol., No. 3 / 4, 72 – 79 (2002).Google Scholar
  14. 14.
    V. K. Sheleg, A. F. Prisevok, and P. N. Klavsut’, “Production facilities for accuracy parameters and quality of complexly shaped components during high-speed multicoordinate machining,” Vestnik BNTU, No. 5, 22031 (2009).Google Scholar
  15. 15.
    E. I. Suzdal’tsev,, D. V. Kharitonov, and A. S. Khamitsaev, RF Patent 2258596, Device for machining large complexly shaped ceramic objects, Claim 11.24.03, Publ. 08.20.05, Byul. No. 23.Google Scholar
  16. 16.
    E. I. Suzdal’tsev,, D. V. Kharitonov, A. V. Dimtriev, et al, RF Patent 23134338 Device for machining large complexly shaped ceramic objects, Claim 02.03.06, Publ. 12.27.07, Byul. No. 36.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • E. I. Suzdal’tsev
    • 1
  • D. V. Kharitonov
    • 1
  • G. A. Kharakhonov
    • 1
  • A. G. Épov
    • 1
  • M. V. Nogarev
    • 1
  1. 1.FGUP ONPP TekhnologiyaObninskRussia

Personalised recommendations