Advertisement

Physicochemical methods for studying the mineral composition and pore structure for the argillaceous part zircon-ilmenite ore gravitation tailings

  • E. S. Abdrakhimova
  • V. Z. Abdrakhimov
Raw Materials

It is established that the argillaceous part zircon-ilmenite ore gravitation tailings (ZIG) is a refractory clay, but it has a complex mineral composition, including in contrast to traditional refractory clays more than ten minerals and an increased amount of Fe2O3 (>5%). The main clay mineral of ZIG is kaolinite, which is poorly crystallized. An increase in ZIG ceramic specimen firing temperature to 1300°C promotes pore size uniformity.

Keywords

argillaceous part zircon-ilmenite ore gravitation tailings (ZIG) mineral composition element-by-element chemical composition kaolinite montmorillonite pore structure method of diffusion small-angle x-ray beam scattering (SAXS method). 

References

  1. 1.
    E. S. Abdrakhimova, “Structure formation of acid-resistant refractories with firing of the argillaceous part zircon-ilmenite ore gravitation tailings,” Refractories and Industrial Ceramics, 50, No. 5, 234 – 237 (2009).CrossRefGoogle Scholar
  2. 2.
    E. S. Abdrakhimova, “Effect of pyrophillite on the drying properties of acid-resistant refractories based on the argillaceous part zircon-ilmenite ore gravitation tailings, Refractories and Industrial Ceramics, 50, No. 6, 409 – 411 (2009).CrossRefGoogle Scholar
  3. 3.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, “Processes that occur during firing of the argillaceous part zircon-ilmenite ore gravitation tailings,” Refractories and Industrial Ceramics, 50, No. 2, 101 – 106 (2009).CrossRefGoogle Scholar
  4. 4.
    E. S. Abdrakhimova, “Effect of pyrophyllite on the mechanical properties and acid resistance of acid-proof materials,” Refractories and Industrial Ceramics, 50, No. 3, 174 – 177 (2009).CrossRefGoogle Scholar
  5. 5.
    E. S. Abdrakhimova, “Effect of feldspar concentrate on the chemical resistance of acid-resistant materials prepared on the basis of different chemical and mineral compositions,” Refractories and Industrial Ceramics, 49, No. 6, 422 – 425 (2008).CrossRefGoogle Scholar
  6. 6.
    E. S. Abdrakhimova, “Effect of feldspar concentrate on processes that occur during firing of acid-resistant materials based on nonferrous metallurgy concentration waste materials and pyrophillite,” Refractories and Industrial Ceramics, 49, No. 5, 336 – 339 (2008).CrossRefGoogle Scholar
  7. 7.
    V. Z. Abdrakhimov, “Ecological and practical aspect of the use of high-alumina petrochemical waste products in the manufacture of acid-resistant materials,” Refractories and Industrial Ceramics, 51, No. 1, 52 – 55 (2010).CrossRefGoogle Scholar
  8. 8.
    V. Z. Abdrakhimov, “Ecological and practical aspects of the use of salt aluminum slags in the productions of ceramic acid-resistant materials,” Refractories and Industrial Ceramics, 51, No. 2, 121 – 125 (2010).CrossRefGoogle Scholar
  9. 9.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, Acid-Resistant refractory Objects with Use of Nonferrous Metallurgy Wastes and Nontraditional Material of Western Kazakhstan [in Russian], Novosibirsk State Architectural Building Univ., Novosibirsk (2000).Google Scholar
  10. 10.
    E. S. Abdrakhimova, I. V. Kovkov, D. Yu. Denisov, et al., Physicochemical processes During Firing of Argillaceous Materials of Different Chemical and Mineral Composition [in Russian], Perspective Development Center, Samara (2008).Google Scholar
  11. 11.
    V. Z. Abdrakhimov and E. S. Abdrakhimova, Physicochemical Processes of Structure Formation in Ceramic Materials Based on Nonferrous Metallurgy and Power Generation Wastes [in Russian], West Kazakhstan State Technical University, Ust’-Kamenogorsk (2000).Google Scholar
  12. 12.
    V. Z. Abdrakhimov, Production of ceramic Objects Based on Power Generation and Nonferrous Metallurgy Wastes [in Russian], West Kazakhstan State Technical University, Ust’-Kamenogorsk (1997).Google Scholar
  13. 13.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, “Features of phase transformation during firing of nonferrous metallurgy waste,” Materialovedenie, No. 11, 51 – 56 (2001).Google Scholar
  14. 14.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, Physicochemical Processes During Firing of Acid-Resistant Refractories [in Russian], Nedra, St. Petersburg (2003).Google Scholar
  15. 15.
    V. Z. Abdrakhimov and E. S. Abdrakhimova, Chemical Technology of Ceramic Brick Using Technogenic Raw Material [in Russian], West Kazakhstan State Technical University, Ust’-Kamenogorsk (2007).Google Scholar
  16. 16.
    E. S. Abdrakhimova, A. V. Abdrakhimov, and V. Z. Abdrakhimov, “Features of structural transformations of iron compounds in argillaceous materials of different chemical and mineralogical composition,” Materialovedenie, No. 12, 43 – 46 (2002).Google Scholar
  17. 17.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, “Structural transformations of iron compounds in argillaceous materials according to Mossbauer spectroscopy data,” Zh. Fiz. Khim., 80, No. 7, 1227 – 1232 (2006).Google Scholar
  18. 18.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, “Synthesis of mullite from technogenic raw material and pyrophyllite,” Zh. Neorg. Khim., 52, No. 3, 395 – 400 (2007).Google Scholar
  19. 19.
    V. Z. Abdrakhimov, “Role of iron oxide in forming the structure of ceramic mineral materials,” Izv. Vyssh. Uchebn. Zaved., Stroitel’stvo, No. 2, 31 – 37 (2009).Google Scholar
  20. 20.
    V. Z. Abdrakhimov, Study of Iron-Containing Traditional Natural and Technogenic Raw Materials on Caking of Ceramic Materials, Effect of Fe 2+ and Fe 3+ Ions on Forming Low-Temperature Mullite [in Russian],West Kazakhstan State Technical University, Ust’-Kamenogorsk (2009).Google Scholar
  21. 21.
    A. I. Avgustinik, Ceramics [in Russian], Lenizdat, Leningrad (1975).Google Scholar
  22. 22.
    A. I. Miklashevskii, Artiastic Ceramic Technology [in Russian], Izd. Lit. po Stroitel’stvu, Leningrad (1972).Google Scholar
  23. 23.
    G. V. Kukolev, Silica Chemistry and Silicate Physical Chemistry [in Russian], Vyssh. Shkola, Moscow (1965).Google Scholar
  24. 24.
    V. F. Pavlov, Physicochemical Bases of Firing Objects of Structural Ceramics [in Russian], Stroizdat, Moscow (1977).Google Scholar
  25. 25.
    P. P. Budnikov, V. L. Balkevich, A. S. Bereznoi, et al., Chemical Technology of Ceramics and Refractories [in Russian], Stroiizdat, Moscow (1972).Google Scholar
  26. 26.
    V. Z. Abdrakhimov, M. P. Zelig, E. S. Abdrakhimova, et al., “Correlation of porous-capillary structure and frost resistance of ceramic material,” Materialovedenie, No. 6, 19 – 23 (2005).Google Scholar
  27. 27.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, Bases of Technical Ceramics [in Russian], West Kazakhstan State Technical University, Ust’-Kamenogorsk (2001).Google Scholar
  28. 28.
    V. Z. Abdrakhimov, I. A. Togzhanov, S. Zh. Saibutalov, et al., “Study of the pre structure in ceramic material,” Izv. Vyssh. Uchebn. Zaved., Stroitel’stvo, No. 6, 72 – 75 (1988).Google Scholar
  29. 29.
    A. Guinier, x-ray Crystals [Russian translation], Fizmatgiz, Moscow (1961).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • E. S. Abdrakhimova
    • 1
  • V. Z. Abdrakhimov
    • 2
  1. 1.S. P. Korolev Samara State Aerospace UniversitySamaraRussia
  2. 2.Samara State Architectural Building UniversitySamaraRussia

Personalised recommendations