Advertisement

Refractories and Industrial Ceramics

, Volume 51, Issue 3, pp 212–218 | Cite as

Use of technogenic formations in the production of unfired refractory composites

  • V. Z. Abdrakhimov
  • A. I. Khlystov
  • V. K. Semenychev
Ecology

Use of inorganic technogenic raw material in composites with phosphate binders makes it possible to prepare a whole set of materials for special purposes: heat-resistant concretes and solutions, liquid phosphate binders, etc. From an ecological point of view these materials may be in demand in the same enterprises where they are formed, and this is a significant step on the path to waste-free technology.

Keywords

technogenic formations unfired refractories pyrite cinder chemical composition magnetite haematite corundum porous structure aluminum iron phosphate binder high-alumina wastes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Khlystov, V. Z. Abdrakhimov, and I. V. Kovkov, “Ecological and practical aspects of using pyrite cinder and high-alumina wastes of petrochemistry in the production of unfired refractory composites,” Ogneupory Tekhn. Keram., No. 3/4, 35 – 43 (2009).Google Scholar
  2. 2.
    A. I. Khlystov, V. Z. Abdrakhimov, I. V. Kovkov, et al., “Ecological aspects of the use of pyrite cinder in the production of unfired refractory composites,” Bashkirskii Khim. Zh., 16, No. 2, 81 – 83 (2009).Google Scholar
  3. 3.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, Physicochemical Processes in Firing of Acid-Resistant Materials [in Russian], Nedra, St. Petersburg (2003).Google Scholar
  4. 4.
    I. V. Khvorov and A. L. Dmitrik, Microstructure of Silica Ores [in Russian], Nauka, Moscow (1972).Google Scholar
  5. 5.
    E. V. Rizhkova, Contemporary Methods for Mineralogical Research [in Russian], Nedra, Moscow (1969).Google Scholar
  6. 6.
    T. I. Litvinova, V. P. Pirozhkova, and A. K. Petrov, Petrography of Nonmetallic Inclusions [in Russian], Metallurgiya, Moscow (1972).Google Scholar
  7. 7.
    V. Z. Abdrakhimov and E. S. Abdrakhimova, Chemical Technology of Ceramic Brick Using Technogenic Raw Material: Teaching Aid [in Russian], Samara State Architectural Building University, Samara (2007).Google Scholar
  8. 8.
    E. S. Abdrakhimova and V. Z. Abdrakhimov, “Structural transformatiosn of iron compounds in clay materials according to Mossbauer spectroscopy data,” Zh. Fiz. Khim., 80, No. 7, 12 – 16 (2006).Google Scholar
  9. 9.
    E. S. Abdrakhimova, V. P. Dolgii, and V. Z. Abdrakhimov, “Effect of iron-c0ntaining slag on the structure of ceramic brick porosity,” Izv. Vyssh. Uchebn. Zaved, Stroitel’stvo, No. 1, 36 – 39 (2006).Google Scholar
  10. 10.
    E. S. Abdrakhimova, V. P. Dolgii, and V. Z. Abdrakhimov, “Effect of iron-containing metallurgical slag on phase transformations during firing of ceramic materials,” Materialovedenie, No. 1, 29 – 34 (2006).Google Scholar
  11. 11.
    E. S. Abdrakhimova, A. V. Abdrakhimov, and V. Z. Abdrakhimov, “Features of structural transformations of compounds in clay materials of different chemical and mineralogical composition,” Materialovedenie, No. 12, 43 – 46 (2002).Google Scholar
  12. 12.
    E. S. Abdrakhimova and V. Z. Abdrakhimov,” Features of phase transformation during firing of nonferrour metallurgy wastes,” Materialovedenie, No. 11, 51 – 56 (2001).Google Scholar
  13. 13.
    V. Z. Abdrakhimov, “Ecological and practical aspects of the use of high-alumina wastes of petrochemistry in the production of acid-resistant materials,” Novye Ogneupory, No. 1, 40 – 43 (2010).Google Scholar
  14. 14.
    A. I. Khlystov, S. V. Soklova, and D. V. Markov, “Increase ain resistance and life of aluminosilicate refractories in a carboncontaining atmosphere,” Ogneupory Techn. Keram., No. 11, 47 – 50 (2005).Google Scholar
  15. 15.
    A. S. Brekman and I. T. Mel’nikova, Structure and Frist Resistance of Raw Materials [in Russian], Gosstroi, Leningrad (1962).Google Scholar
  16. 16.
    D. I. Davidovich, D. E. Pavlov, and V. S. Cherepanov, “Methods for studying the macrostructure of glass-crystalline and mineralized foams,” Proc. Inst. NIIstroikeramiki. Scientific research for improving the quality of ceramic building products, NIIstroikeramika, Moscow (1979).Google Scholar
  17. 17.
    S. A. Saltykov, “Calculation of the size distribution curve for spatial grains,” Zavod. Lab., 15, No. 11, 1317 – 1319 (1949).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. Z. Abdrakhimov
    • 1
  • A. I. Khlystov
    • 2
  • V. K. Semenychev
    • 1
  1. 1.Samara Academy of State and Municipal GovernmentSamaraRussia
  2. 2.Samara State Architectural Building UniversitySamaraRussia

Personalised recommendations