Advertisement

Refractories and Industrial Ceramics

, Volume 51, Issue 1, pp 25–31 | Cite as

Preparation and properties of corundum HCBS and ceramic concretes. Part 1. Mixed HCBS in the system electrocorundum — very fine quartz glass

  • Yu. E. Pivinskii
  • Pavel V. Dyakin
Scientific Research and Development

A mixed highly concentrated suspension with improved rheological properties in the system corundum (89%) – quartz glass (11%) is prepared by combined wet grinding. A semifinished product with a porosity up to 17.5% with an ultimate strength in bending up to 5 MPa is prepared on the basis of it. The effect of heat treatment temperature on material properties is studied. The HCBS composition obtained as a matrix system combined with corundum or high-alumina fillers is promising for the preparation of ceramic concretes.

Keywords

highly concentrated ceramic binder suspension (HCBS) very fine quartz glass (VFQG) matrix system ceramic concrete volume constancy nanostabilization nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. E. Pivinskii, Ceramic and Refractory Materials, Vol. 2 [in Russian], Stroizdat SPb, St. Petersburg (2003).Google Scholar
  2. 2.
    Yu. E. Pivinskii and D. A. Dobrodon, “Preparation and properties of binder high-alumina suspensions in the bauxite – quartz glass system,” Novye Ogneupory, No. 5, 19 – 26 (2002).Google Scholar
  3. 3.
    Yu. E. Pivinskii and P. V. Dyakin, “Efficiency of adding very fine silica in high-alumina and corundum ceramic technology,” Refractories and Industrial Ceramics, 50, No. 1, 43 – 48; 50, No. 2, 121 – 126 (2009).Google Scholar
  4. 4.
    Yu. E. Pivinskii, “Quartz ceramic, artificial ceramic binder (HCBS) and ceramic concretes – history and future development of technology,” Ogneupory Tekhn. Keram., No. 3, 8 – 17; No. 4, 5, 9 – 19 (2009).Google Scholar
  5. 5.
    E. M. Grishpun and Yu. E. Pivinskii, “Twenty-year epoch of cooperation,” Novye Ogneupory, No. 1, 15 – 25 (2007).Google Scholar
  6. 6.
    S. M. Mal’tsev and A. S. Gorshkov, “Practical use of ceramic concretes at ZAO Soyuzteplostroi,” Novye Ogneupory, No. 2, 21 – 23 (2007).Google Scholar
  7. 7.
    M. A. Trubitsyn, “Effective service of aluminosilicate ceramic concretes in lining firing furnaces of the ceramic industry,” in: Ceramics and Refractories: Future Solutions and Nanotechnology [in Russian], Belgorod (2009).Google Scholar
  8. 8.
    S. M. Mal’tsev, “Future use of heat insulation materials manufactured by ceramic concrete technology,” in: Ceramics and Refractories: Future Solutions and Nanotechnology [in Russian], Belgorod (2009).Google Scholar
  9. 9.
    Yu. E. Pivinskii, Theoretical Aspects of Ceramic and Refractory Technology: Vol. 1 [in Russian], Stroizdat SPb, St. Petersburg (2003).Google Scholar
  10. 10.
    E. M. Grishpun, A. M. Gorokhovskii, E. V. Beklemyshev, et al., “OAO Dinur refractory objects and mixes for contemporary technology of ferrous and nonferrous metallurgy,” Refractories and Industrial Ceramics, 49, No. 6, 405 – 410 (2008).CrossRefGoogle Scholar
  11. 11.
    G. M. Martynenko, S. M. Mal’tsev, and S. A. Zabolotnyi, “Use of refractories and heat insulation objects of ceramic concrete in ferrous and nonferrous metallurgy,” Novye Ogneupory, No. 6, 3 – 5 (2009).Google Scholar
  12. 12.
    Yu. E. Pivinskii, E. B. Skorodumova, I. I. Kabanova, et al., “Evaluation of methods for preparation and properties of corundum suspensions,” Ogneupory, No. 1, 4 – 9 (1985).Google Scholar
  13. 13.
    Yu. E. Pivinskii, “Phase relationships, important production properties and classification of ceramic and other binder systems,” Ogneupory, No. 6, 49 – 60 (1982).Google Scholar
  14. 14.
    T. M. Khranovskaya and N. N. Savanina, “Cast corundum components,” Refractories and Industrial Ceramics, 49, No. 3, 209 – 212 (2008).CrossRefGoogle Scholar
  15. 15.
    I. D. Kashcheev (editor), Refractories for Industrial Aggregates and Furnaces. In 2 books, book 1, Refractory Production [in Russian], Intermet Inzhiniring, Moscow (2000).Google Scholar
  16. 16.
    Yu. E. Pivinskii, Unmolded Refractories, in 2 vol. vol. 1 General Questions of Technology [in Russian], Teploenergetika, Moscow (2003).Google Scholar
  17. 17.
    Z. Ximwer, J Dongliang, T. Shougong, et al., “Study of properties of powder oxide aluminum silicozole,” J. Chin. Ceram. Soc., 29, No. 1, 263 – 266 (2001).Google Scholar
  18. 18.
    M. X. Fisher, M. Colic, M. P. Rau, et al., “Effect of silica nanoparticle on the stability of alumina / silica suspension,” J. Amer. Ceram. Soc., 84, No. 4, 713 (2001).CrossRefGoogle Scholar
  19. 19.
    V. S. Bakunov, A. V. Belyakov, E. S. Lukin, et al., Oxide Ceramics: Sintering and Creep [in Russian], RKhTU im D. I. Mendeleeva, Moscow (2007).Google Scholar
  20. 20.
    Yu. E. Pivinskii, Pavel V. Dyakin, and Petr V. Dyakin, “Study of compaction of high-alumina cermaoconcretes. 4. The effect of firing temperature on the properties of matrix system and on ceramoconcrete,” Refractories and Industrial Ceramics, 47, No. 5, 302 – 309 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • Yu. E. Pivinskii
    • 1
  • Pavel V. Dyakin
    • 2
  1. 1.OOO NVF Kerambet-OgneuporSt PetersburgRussia
  2. 2.St Petersburg State Technological Institute (Technical University)St PetersburgRussia

Personalised recommendations