Skip to main content
Log in

Thermal conductivity of beryllium oxide ceramic

  • Published:
Refractories and Industrial Ceramics Aims and scope

Prospects are discussed for the use of BeO-ceramic in electronic and other fields of technology and special instrument building. With use of BeO-ceramic in electronic technology one of the main parameters is its high thermal conductivity. Analysis of publications shows that BeO-ceramic in the range 300 – 500 K exhibits the highest thermal conductivity among all ceramic materials used in electronic technology. Results are provided for a study of the thermal conductivity of 170 ceramic specimens made from BeO-ceramic with an identical configuration and dimensions prepared from one batch of BeO starting powder. It is established that the average size of microcrystals and the density of specimens have a defining effect on thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Belyaev, Beryllium Oxide, 2nd edition [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  2. V. S. Kiiko, Yu. N. Makurin, and A. L. Ivanovskii, Ceramics Based on Beryllium Oxide: Preparation, Physicochemical Properties and Applications [in Russian], UrO RAN, Ekateringurg (2006).

    Google Scholar 

  3. E. Ryschkevitch, “Features of beryllia powder ceramics,” Metallurgy International, 1, No. 2, 49 – 52 (1969).

    Google Scholar 

  4. F. Buresch, “Berylliumoxid - thoriumoxid und zirkondioxid -keramiken,” Radex Rundschau, No. 1 / 2, 133 – 145 (1983).

  5. V. S. Kiiko and M. G. Zuev, “Luminescence of Eu3+ and Tb3+ ions in transparent beryllium ceramic,” Neorgan Materialy, 31, No. 5, 709 – 712 (1995).

    Google Scholar 

  6. V. S. Kiiko and Yu. N. Makurin, “Stimulation of luminescence of transparent beryllium ceramic with RE-metal impurities,” Neorgan Materialy, 33, No. 8, 860 – 864 (1997).

    CAS  Google Scholar 

  7. V. S. Kortov, J. J. Milman, A. J. Slesarev, et al., “New BeO ceramics for TL-ESR dosimetry radiation protection dosimetry,” Nucl. Technol., 47, No. 1 / 4, 267 – 270 (1993).

    CAS  Google Scholar 

  8. V. S. Kiiko, V. Ya. Vaispapir, M. A. Gorbunova, et a., “Effect of iron impurity phases on the color and electrophysical popreties of beryllium ceramic,” Ogneupory Tekhn. Keram., No. 9, 8 – 12 (2006).

  9. Yu. N. Makurin, I. R. Shein, M. A. Gorbunova, et al., “Firstprinciple quantum-ceramical calculations of several thermomechanical parameters of beryllium ceramics,” Refractories and Industrial Ceramics, 47, No. 5, 310 – 313 (2006).

    Article  CAS  Google Scholar 

  10. U. D. Kingery, Introduction to Ceramics [Russian translation], Izd. Lit. po Stroitel’stvu, Moscow (1964).

    Google Scholar 

  11. G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds: Handbook [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  12. G. V. Samsonov (editor), Physicochemical Properties of Oxides: Handbook [in Russian], Metallurgiya, Moscow (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Novye Ogneupory, No. 12 pp. 43 – 47, December 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akishin, G.P., Turnaev, S.K., Vaispapir, V.Y. et al. Thermal conductivity of beryllium oxide ceramic. Refract Ind Ceram 50, 465–468 (2009). https://doi.org/10.1007/s11148-010-9239-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-010-9239-z

Keywords

Navigation