Advertisement

Refractories and Industrial Ceramics

, Volume 50, Issue 6, pp 465–468 | Cite as

Thermal conductivity of beryllium oxide ceramic

  • G. P. Akishin
  • S. K. Turnaev
  • V. Ya. Vaispapir
  • M. A. Gorbunova
  • Yu. N. Makurin
  • V. S. Kiiko
  • A. L. Ivanovskii
Article

Prospects are discussed for the use of BeO-ceramic in electronic and other fields of technology and special instrument building. With use of BeO-ceramic in electronic technology one of the main parameters is its high thermal conductivity. Analysis of publications shows that BeO-ceramic in the range 300 – 500 K exhibits the highest thermal conductivity among all ceramic materials used in electronic technology. Results are provided for a study of the thermal conductivity of 170 ceramic specimens made from BeO-ceramic with an identical configuration and dimensions prepared from one batch of BeO starting powder. It is established that the average size of microcrystals and the density of specimens have a defining effect on thermal conductivity.

Keywords

BeO-ceramic thermal conductivity BeO powder average grain size density specimen porosity impurity phase physicochemical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Belyaev, Beryllium Oxide, 2nd edition [in Russian], Atomizdat, Moscow (1980).Google Scholar
  2. 2.
    V. S. Kiiko, Yu. N. Makurin, and A. L. Ivanovskii, Ceramics Based on Beryllium Oxide: Preparation, Physicochemical Properties and Applications [in Russian], UrO RAN, Ekateringurg (2006).Google Scholar
  3. 3.
    E. Ryschkevitch, “Features of beryllia powder ceramics,” Metallurgy International, 1, No. 2, 49 – 52 (1969).Google Scholar
  4. 4.
    F. Buresch, “Berylliumoxid - thoriumoxid und zirkondioxid -keramiken,” Radex Rundschau, No. 1 / 2, 133 – 145 (1983).Google Scholar
  5. 5.
    V. S. Kiiko and M. G. Zuev, “Luminescence of Eu3+ and Tb3+ ions in transparent beryllium ceramic,” Neorgan Materialy, 31, No. 5, 709 – 712 (1995).Google Scholar
  6. 6.
    V. S. Kiiko and Yu. N. Makurin, “Stimulation of luminescence of transparent beryllium ceramic with RE-metal impurities,” Neorgan Materialy, 33, No. 8, 860 – 864 (1997).Google Scholar
  7. 7.
    V. S. Kortov, J. J. Milman, A. J. Slesarev, et al., “New BeO ceramics for TL-ESR dosimetry radiation protection dosimetry,” Nucl. Technol., 47, No. 1 / 4, 267 – 270 (1993).Google Scholar
  8. 8.
    V. S. Kiiko, V. Ya. Vaispapir, M. A. Gorbunova, et a., “Effect of iron impurity phases on the color and electrophysical popreties of beryllium ceramic,” Ogneupory Tekhn. Keram., No. 9, 8 – 12 (2006).Google Scholar
  9. 9.
    Yu. N. Makurin, I. R. Shein, M. A. Gorbunova, et al., “Firstprinciple quantum-ceramical calculations of several thermomechanical parameters of beryllium ceramics,” Refractories and Industrial Ceramics, 47, No. 5, 310 – 313 (2006).CrossRefGoogle Scholar
  10. 10.
    U. D. Kingery, Introduction to Ceramics [Russian translation], Izd. Lit. po Stroitel’stvu, Moscow (1964).Google Scholar
  11. 11.
    G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds: Handbook [in Russian], Metallurgiya, Moscow (1979).Google Scholar
  12. 12.
    G. V. Samsonov (editor), Physicochemical Properties of Oxides: Handbook [in Russian], Metallurgiya, Moscow (1969).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • G. P. Akishin
    • 1
  • S. K. Turnaev
    • 1
  • V. Ya. Vaispapir
    • 2
  • M. A. Gorbunova
    • 3
  • Yu. N. Makurin
    • 3
  • V. S. Kiiko
    • 3
  • A. L. Ivanovskii
    • 4
  1. 1.TOO KazMetizPromUst’-KamneogorskRussia
  2. 2.KTTs OAO Komintern Novosibirsk PlatNovosibirskRussia
  3. 3.Ural State Technical University - UPIEkaterinbergRussia
  4. 4.Institute of Solid Chemistry UrO RANEkaterinbergRussia

Personalised recommendations