Refractories and Industrial Ceramics

, Volume 45, Issue 6, pp 428–430 | Cite as

A method for determining the charge state of chromium in Cr-doped Bi12SiO20 and Bi12TiO20 materials

  • A. A. Nechitailov
  • M. V. Krasin’kova
  • A. P. Nechitailov


A chemical method for determination of the charge state of chromium in B2O3-based materials (Bi12SiO20 and Bi12TiO20 single crystals) in a wide Cr concentration range (1 × 10−5 − 2 × 10−2 wt.%)is proposed. The method is based on a color reaction between Cr6+ and diphenylcarbazide in an acid medium.


Color Chromium Charge State Acid Medium Chemical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. V. Mokrushina, A. A. Nechitailov, and V. V. Prokofiev, “Effect of a low chromium impurity on properties of photoinduced charger carriers in Bi12TiO20 and Bi12SiO20 single crystals,” Optics Comm., 23, 592–596 (1996).Google Scholar
  2. 2.
    V. K. Malinovskii, O. A. Gudaev, V. A. Gusev, and S. I. Demenko, Photoinduced Phenomena in Sillenites [in Russian], Nauka (SO), Novosibirsk (1990).Google Scholar
  3. 3.
    W. Wardzynski, T. Lukasiewicz, and J. Zmija, “Reversible photochromic effects in doped single crystals of bismuth germanium (BGO) and bismuth silicon (BSO) oxides,” Optics Comm., 30(2), 203–205 (1979).Google Scholar
  4. 4.
    W. Wardzynski, H. Szymczak, K. Patau, T. Lukasiewicz, and J. Zmija, “Light induced charge transfer processes in Cr-doped Bi12GeO20 and Bi12SiO20 single crystals,” J. Phys. Chem. Solids, 43(1), 767–769 (1982).Google Scholar
  5. 5.
    W. Wardzynski and H. Szymczak, “The center of orthorhombic symmetry in chromium doped Bi12GeO20 and Bi12SiO20 single crystals,” J. Phys. Chem. Solids, 45(8/9), 887–896 (1984).Google Scholar
  6. 6.
    T. V. Panchenko and N. A. Truseeva, “Optical absorption in doped Bi12SiO20 crystals,” Ukr. Fiz. Zh., 29, 1186–1191 (1984).Google Scholar
  7. 7.
    B. Briat, V. Topa, C. Z. Boudy, and J. C. Zaunay, “Sites and valencies of chromium in bismuth germanates: a magnetic circular dichroism and absorption study,” J. Lumin., 53, 524–528 (1992).Google Scholar
  8. 8.
    A. V. Egorysheva, V. I. Burkov, Yu. F. Kargin, and V. V. Volkov, “Spectroscopic and chiroptical properties of doped sillenite crystals. VI. The effect of external factors on the properties of Cr-doped Bi12TiO20 and Bi12SiO20 crystals,” Neorg. Mater., 33(5), 574–580 (1997).Google Scholar
  9. 9.
    Z. Marczenko, Kolorymetryczne Oznaczanie Pierwiastków (Colorimetric Determination of Elements), Wydawnictwo Naukowo-Techyniczne, Warszawa (1968).Google Scholar
  10. 10.
    A. A. Nechitailov, V. V. Prokof’ev, and M. V. Krasin’kova, “Photometric determination of chromium in Bi12SiO20 and Bi12TiO20 single crystals and precursor raw materials,” Zh. Anal. Khim., 40(11), 2007–2012 (1985).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • A. A. Nechitailov
    • 1
    • 2
  • M. V. Krasin’kova
    • 1
    • 2
  • A. P. Nechitailov
    • 1
    • 2
  1. 1.A. F. Ioffe Physico-Technical InstituteRussian Academy of Sciences (RAS)St. PetersburgRussia
  2. 2.Russian National Aluminum-Magnesium Institute (VAMI)St. PetersburgRussia

Personalised recommendations