Review of Derivatives Research

, Volume 21, Issue 1, pp 119–148 | Cite as

Tempered stable structural model in pricing credit spread and credit default swap

  • Sung Ik Kim
  • Young Shin Kim


In this paper, we explore the features of a structural credit risk model wherein the firm value is driven by normal tempered stable (NTS) process belonging to the larger class of Lévy processes. For the purpose of comparability, the calibration to the term structure of a corporate bond credit spread is conducted under both NTS structural model and Merton structural model. We find that NTS structural model provides better fit for all credit ratings than Merton structural model. However, it is noticed that probabilities of default derived from the calibration of the term structure of a bond credit spread might be overestimated since the bond credit spread could contain non-default components such as illiquidity risk or asymmetric tax treatment. Hence, considering CDS spread as a reflection of the pure credit risk for the reference entity, we calibrate it in order to obtain more reasonable probability of default and obtain valid results in calibration of the market CDS spread with NTS structural model.


Normal tempered stable process Structural model Credit risk Credit derivatives 

JEL Classification

C58 G12 G13 G31 E51 


  1. Altman, E., Resti, A., & Sironi, A. (2004). Default recovery rates in credit risk modelling: A review of the literature and empirical evidence. Economic Notes, 33(2), 183–208.CrossRefGoogle Scholar
  2. Anand, A., Li, T., Kurosaki, T., & Kim, Y. S. (2016). Foster-hart optimal portfolios. Journal of Banking and Finance, 68, 117–130.CrossRefGoogle Scholar
  3. Applebaum, D. (2009). Lévy processes and stochastic calculus. Cambridge: Cambridge University Process.CrossRefGoogle Scholar
  4. Barndorff-Nielson, O. E., & Levendorskii, S. Z. (2001). Feller processes of normal inverse Gaussian type. Quantitative Finance, 1(3), 318–331.CrossRefGoogle Scholar
  5. Barndorff-Nielson, O. E., & Shephard, N. (2001). Normal modified stable processes. Economics Series Working Papers from University of Oxford, Department of Economics 72.Google Scholar
  6. Bertoin, J. (1996). Lévy processes (Vol. 121). Cambridge: Cambridge University Process.Google Scholar
  7. Black, F., & Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. Journal of Finance, 31(2), 351–367.CrossRefGoogle Scholar
  8. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.CrossRefGoogle Scholar
  9. Boyarchenko, S., & Levendorskii, S. Z. (2000). Option pricing for truncated Lévy processes. International Journal of Theoretical and Applied Finance, 3(3), 549–552.CrossRefGoogle Scholar
  10. Cariboni, J., & Schoutens, W. (2007). Pricing credit default swaps under Lévy models. Journal of Computational Finance, 10(4), 71–91.CrossRefGoogle Scholar
  11. Carr, P., Geman, H., Madan, D., & Yor, M. (2002). The fine structure of asset returns: An empirical investigation. The Journal of Business, 75(2), 305–332.CrossRefGoogle Scholar
  12. Carr, P., & Madan, D. (1998). Option valuation using the fast Fourier tansform. Journal of Computational Finance, 2, 61–73.CrossRefGoogle Scholar
  13. Chaplin, G. (2010). Credit derivatives: Trading, investing, and risk management. Hoboken, NJ: Wiley.Google Scholar
  14. Collin-Dufresne, P., & Goldstein, R. S. (2001). Do credit spreads reflect stationary leverage ratios? Journal of Finance, 56(6), 1929–1957.CrossRefGoogle Scholar
  15. Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. London: Chapman and Hall/CRC.Google Scholar
  16. Delianedis, G., & Geske, R. (2001). The components of corporate credit spreads: Default, recovery, tax, jumps, liquidity, and market factors. Working Paper, UCLA Anderson School.Google Scholar
  17. Doetsch, G. (1970). Introduction to the theory and application of the Laplace transformation. New York, NY: Springer.Google Scholar
  18. Duffie, D. (1999). Credit swap valuation. Financial Analysts Journal, 55(1), 73–87.CrossRefGoogle Scholar
  19. Duffie, D., Schroder, M., & Skiadas, C. (1997). A term structure model with preferences for the timing of the resolution of uncertainty. Economic Theory, 9(1), 3–22.CrossRefGoogle Scholar
  20. Duffie, D., & Singleton, K. (1997). An economic model of the term structure of interest rate swap yields. Journal of Finance, 52(4), 1287–1321.CrossRefGoogle Scholar
  21. Eom, Y. H., Helwege, J., & Huang, J. Z. (2004). Structural models of corporate bond pricing: An empirical analysis. Review of Financial Studies, 17(2), 499–544.CrossRefGoogle Scholar
  22. Fang, F., Jönsson, H., Oosterlee, C. W., & Schoutens, W. (2010). Fast valuation and calibration of credit default swaps under Lévy dynamics. Journal of Computational Finance, 14(2), 1–30.CrossRefGoogle Scholar
  23. Fang, F., & Oosterlee, C. W. (2008). A novel pricing method for European options based on Fourier-cosine series expansions. SIAM Journal of Scientific Computing, 31(2), 826–848.CrossRefGoogle Scholar
  24. Geske, R. (1977). The valuation of corporate liabilities as compound options. Journal of Financial and Quantitative Analysis, 12(4), 499–544.CrossRefGoogle Scholar
  25. Giesecke, K., & Goldberg, L. R. (2004). Forecasting default in the face of uncertainty. Journal of Derivatives, 12(1), 14–25.CrossRefGoogle Scholar
  26. Gil-Peláez, J. (1951). Note on the inversion theorem. Biometrika, 38(3–4), 481–482.CrossRefGoogle Scholar
  27. Hilberink, B., & Rogers, L. (2002). Optimal capital structure and endogenous default. Finance and Stochastics, 6(2), 237–263.CrossRefGoogle Scholar
  28. Huang, J.-Z., & Huang, M. (2012). How much of the corporate-treasury yield spread is due to credit risk? Review of Asset Pricing Studies, 2, 153–202.CrossRefGoogle Scholar
  29. Hull, J. C. (2006). Options, futures, and other derivatives. Boston, MA: Prentice Hall.Google Scholar
  30. ISDA. (2014). 2014 ISDA credit derivatives definitions. International Swaps and Derivatives Association.Google Scholar
  31. Jarrow, R., Lando, D., & Turnbull, S. (1997). A markov model for the term structure of credit risk spreads. The Review of Financial Studies, 10(2), 481–523.CrossRefGoogle Scholar
  32. Jarrow, R., & Turnbull, S. (1995). Pricing derivatives on financial securities subject to credit risk. Journal of Finance, 50(1), 53–85.CrossRefGoogle Scholar
  33. Jones, P. E., Mason, S. P., & Rosenfeld, E. (1984). Contingent claims analysis of corporate capital structures: An empirical investigation. Journal of Finance, 39(3), 611–625.CrossRefGoogle Scholar
  34. Kim, Y. S., Fabozzi, F., Lin, Z., & Rachev, S. T. (2012a). Option pricing and hedging under a stochastic volatility Lévy process model. Review of Derivatives Research, 15, 81–97.CrossRefGoogle Scholar
  35. Kim, Y. S., Giacometti, R., Rachev, S. T., Fabozzi, F., & Mignacca, D. (2012b). Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model. Annals of Operations Research, 201(1), 325–343.CrossRefGoogle Scholar
  36. Kim, Y. S., Lee, J., Mittnik, S., & Park, J. (2015). Quanto option pricing in the presence of fat tails and asymmetric dependence. Journal of Econometrics, 187(2), 512–520.CrossRefGoogle Scholar
  37. Koponen, I. (1995). Analytic approach to the problem of convergence of truncated Lévy flights towards the gaussian stochastic process. Physical Review E, 52(1), 1197–1199.CrossRefGoogle Scholar
  38. Küchler, U., & Tappe, S. (2013). Tempered stable distributions and processes. Stochastic Processes and Their Applications, 123(12), 4256–4293.CrossRefGoogle Scholar
  39. Lando, D. (1994). Three essay on contingent claims pricing. Ph.D. thesis, Cornell University.Google Scholar
  40. Leland, H. E., & Toft, K. B. (1996). Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. Journal of Finance, 51(3), 987–1019.CrossRefGoogle Scholar
  41. Lewis, A. L. (2001). A simple option formula for general jump-diffusion and other exponential Lévy processes.
  42. Lin, H., Liu, S., & Wu, C. (2011). Dissecting corporate bond and CDS spreads. The Journal of Fixed Income, 20, 7–39.CrossRefGoogle Scholar
  43. Longstaff, F. A., Mithal, S., & Neis, E. (2005). Corporate yields spreads: Default risk or liquidity? New evidence from the credit default swap market. Journal of Finance, 60(5), 2213–2253.CrossRefGoogle Scholar
  44. Longstaff, F. A., & Schwartz, E. S. (1995). A simple approach to valuing risky fixed and floating rate debt. Journal of Finance, 50(3), 789–819.CrossRefGoogle Scholar
  45. Madan, D., & Schoutens, W. (2007). Break on through to the single side. SSRN 1003144.Google Scholar
  46. Madan, D., & Unal, H. (1999). Pricing the risks of default. Review of Derivatives Research, 2(2), 121–160.Google Scholar
  47. Mandelbrot, B. (1963). New methods in statistical economics. Journal of Political Economics, 71(5), 421–440.CrossRefGoogle Scholar
  48. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449–470.Google Scholar
  49. O’Kane, D. (2008). Modelling single-name and multi-name credit derivatives. Hoboken, NJ: Wiley.Google Scholar
  50. Rachev, S. T., Kim, Y. S., Bianchi, M. L., & Fabozzi, F. J. (2011). Financial models with Lévy processes and volatility clustering. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  51. Rosiński, J. (2007). Tempering stable processes. Stochastic Processes and Their Applications, 117(6), 677–707.CrossRefGoogle Scholar
  52. Sato, K.-I. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Process.Google Scholar
  53. Schoutens, W., & Cariboni, J. (2009). Lévy processes in credit risk. Hoboken, NJ: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsStony Brook UniversityStony BrookUSA
  2. 2.College of BusinessStony Brook UniversityStony BrookUSA

Personalised recommendations