Reading and Writing

, Volume 20, Issue 1–2, pp 27–49 | Cite as

Back to Africa: Tracing Dyslexia Genes in East Africa

  • Elena L. Grigorenko
  • Adam Naples
  • Joseph Chang
  • Christina Romano
  • Damaris Ngorosho
  • Selemani Kungulilo
  • Matthew Jukes
  • Donald Bundy


A sample of Swahili-speaking probands with reading difficulties was identified from a large representative sample of 1,500 school children in the rural areas of Tanzania. Families of these probands (n = 88) were invited to participate in the study. The proband and his/her siblings received a battery of reading-related tasks and performance on these tasks was recorded and treated as phenotypic data. Molecular-genetic analyses were carried out with 47 highly polymorphic markers spanning three previously identified regions of interest harboring susceptibility loci for reading difficulties: 2p, 6p, and 15q (DYX1–DYX3). The analyses revealed the involvement of these regions in the development of reading difficulties in Swahili. The linkage signals are especially pronounced for time (compared with error) indicators of reading difficulties. These findings are easily interpretable because in transparent languages such as Swahili deficits in reading are more related to the rate/speed of reading and reading-related processes than to the number of errors made. In short, the study incrementally advances the field by adding an understudied language and an understudied population to the variety of languages and populations in the field of molecular-genetic studies of reading difficulties.


Candidate genes Dyslexia Linkage analyses Regional mapping Swahili 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported primarily by the Partnership for Child Development, with headquarters at Imperial College, London, United Kingdom. The PCD in turn received major support from the James S. McDonnell Foundation. This work also received partial support from a grant under the Javits Act Program (Grant No. R206R00001), administered by the Institute for Educational Sciences, U.S. Department of Education, and from a grant P01 HD 21887, administered by the U.S. National Institutes of Health.

We express our gratitude to our many Tanzanian colleagues who assisted us in data collection and processing. Moreover, the project would never have been completed without the support of the Tanzanian Ministries of Education and Health and local authorities in Bagamoyo. We also express our gratitude to Dr. Linda Jarvin for her assistance with transporting the samples and to Ms. Robyn Rissman for her editorial aid. Finally, our special thanks are due to the children and their families who participated in this research.


  1. Alarcon M., Yonan A. L., Gilliam T. C., Cantor R. M., Geschwind D. H., (2005). Quantitative genome scan and Ordered-Subsets Analysis of autism endophenotypes support language QTLs Molecular Psychiatry 10:747–757CrossRefGoogle Scholar
  2. Alcock K. J., Ngorosho D., (2003). Learning to spell a regularly spelled language is not a trivial task – Patterns of errors in Kiswahili Reading & Writing 16:635–666CrossRefGoogle Scholar
  3. Alcock K. J., Ngorosho D., (2004). Interaction between phonological and grammatical processing in single word production in Kiswahili Language & Speech 47:1–30CrossRefGoogle Scholar
  4. Alcock K. J., Nokes K., Ngowi F., Musabi C., Mbise A., Mandali R., et al. (2000). The development of reading tests for use in a regularly spelled language Applied Psycholinguistics 21:525–555CrossRefGoogle Scholar
  5. Amberber, M., Collins, P. (Eds.). (2002). Language universals and variation. Praeger, Westport, CTGoogle Scholar
  6. Barr C., (2005). Linkage studies of reading disabilities and ADHD in the chromosome 6p and 15q regions. SSSR Annual Meeting: Pre-conference, Toronto, CAGoogle Scholar
  7. Bellini G., Bravaccio C., Calamoneri F., Cocuzza M. D., Fiorillo P., Gagliano A., et al. (2005). No evidence for association between dyslexia and DYX1C1 functional variatns in a group of children and adolescents from Southern Italy Journal of Molecular Neuroscience 27:311–314CrossRefGoogle Scholar
  8. Brady S. A., (1997). Ability to encode phonological representations: An underlying difficulty of poor readers. In: Blachman B. A., (Eds) Foundations of reading acquisition and dyslexia: Implications for early intervention. Lawrence Erlbaum Associates, Publishers, Mahwah, NJ, pp. 21–47Google Scholar
  9. Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., DeFries J. C., (1994). Quantitative trait locus for reading disability on chromosome 6 Science 226:276–279CrossRefGoogle Scholar
  10. Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., DeFries J. C., (1995). Quantitative trait locus for reading disability: Correction Science 268:1553CrossRefGoogle Scholar
  11. Chapman N. H., Igo R. P., Thomson J. B., Matsushita M., Brkanac Z., Holzman T., et al. (2004). Linkage analyses of four regions previously implicated in dyslexia: Confirmation of a locus on chromosome 15q American Journal of Medical Genetics (Neuropsychiatric Genetics) 131B:67–75CrossRefGoogle Scholar
  12. Chen G., Adeyemo A. A., Johnson T., Zhou J., Amoah A., Owusu S., et al. (2005). A genome-wide scan for quantitative trait loci linked to obesity phenotypes among West Africans International Journal of Obesity 29:255–259CrossRefGoogle Scholar
  13. Chiu Y. F., Chuang L. M., Hsiao C. F., Hung Y. J., Lin M. W., Chen Y. T., et al. (2005). An autosomal genome-wide scan for loci linked to pre-diabetic phenotypes in nondiabetic Chinese subjects from the Stanford Asia-Pacific Program of Hypertension and Insulin Resistance Family Study Diabetes 54:1200–1206Google Scholar
  14. Cope N., Harold D., Hill G., Moskvina V., Holmans P., Owen M. J., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia American Journal of Human Genetics 76:581–591CrossRefGoogle Scholar
  15. Denckla, M. A., & Rudel, R. G. (1976). Naming of object drawing by dyslexia and other learning disabled children. Brain and Language, 3, 1–16Google Scholar
  16. Deffenbacher K. E., Kenyon J. B., Hoover D. M., Olson R. K., Pennington B. F., DeFries J. C., et al. (2004). Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses Human Genetics 115:128–138CrossRefGoogle Scholar
  17. Fabian J., (1986). Language and colonial power. University of California Press, BerkleyGoogle Scholar
  18. Fagerheim T., Raeymaekers P., Tønnessen F. E., Pedersen M., Tranebjærg L., Lubs H. A., (1999). A new gene (DYX3) for dyslexia is located on chromosome 2 Journal of Medical Genetics 36:664–669Google Scholar
  19. Fisher S. E., Francks C., Marlow A. J., MacPhie I. L., Newburry D. F., Cardon L. R., et al. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia Nature Genetics 30:86–91CrossRefGoogle Scholar
  20. Francks C., Paracchini S., Smith S. D., Richardson A. J., Scerri T. S., Cardon L. R., et al. (2004). A 77-kilobase region on chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States American Journal of Human Genetics 75:1046–1058CrossRefGoogle Scholar
  21. Gathercole S. E., Willis G. S., Baddeley A. D., Emslie H., (1994). The childrenȁ9s test of non-word repetition: A test of phonological memory Memory 2:103–127Google Scholar
  22. Gayán J., Smith S. D., Cherny S. S., Cardon L. R., Fulker D. W., Brower A. M., et al. (1999). Quantitative-trait locus for specific language and reading deficits on chromosome 6p American Journal of Human Genetics 64:157–164CrossRefGoogle Scholar
  23. Goulandris, N. (Ed.). (2003). Dyslexia in different languages: A cross-linguistic comparison. Whurr Publishers, LondonGoogle Scholar
  24. Grigorenko E. L., (2005a). A conservative meta-analysis of linkage and linkage-association studies of developmental dyslexia Scientific Studies of Reading 9:285–316CrossRefGoogle Scholar
  25. Grigorenko E. L., (2005b). If John were Ivan: Would he fail in reading? In: Joshi R. M., Aaron P. G., (Eds) Handbook of orthography and literacy. Lawrence Erlbaum Associates, Mahwah, NJ, pp. 303–320Google Scholar
  26. Grigorenko E. L., Ngorosho D., Jukes M., Bundy D., (2006). Reading in able and disabled readers from around the world: Same or different? An illustration from a study of reading-related processes in a Swahili sample of siblings Journal of Reading Research 29:104–123CrossRefGoogle Scholar
  27. Grigorenko E. L., Ngorosho D., Romano C., Turechek L., Yrigollen C., (2004). Two failed attempts to replicate the association between DD and DYX1C1/EKN1 Behavior Genetics 34:642–643Google Scholar
  28. Grigorenko E. L., Wood F. B., Meyer M. S., Hart L. A., Speed W. C., Shuster A., et al. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15 American Journal of Human Genetics 60:27–39Google Scholar
  29. Hannula-Jouppi K., Kaminen-Ahola N., Taipale M., Eklund R., Nopola-Hemmi J., Kääriäinen H., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate dene for developmental dyslexia PLoS 1:e50CrossRefGoogle Scholar
  30. Heath S. C., (1997). Markov Chain Monte Carlo segregation and linkage analysis for oligogenic models American Journal of Human Genetics 61:748–760Google Scholar
  31. Heine, B., Nurse, D. (Eds.). (2000). African languages: An introduction. Cambridge University Press, New YorkGoogle Scholar
  32. Hombert J.-M., Hyman L. M., (1999). Bantu historical linguistics. CSLI Publications, Washington, DCGoogle Scholar
  33. Kaminen N., Hannula-Jouppi K., Kestilä M., Lahermo P., Muller K., Kaaranen M., et al. (2003). A genome scane for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32 Journal of Medical Genetics 40:340–345CrossRefGoogle Scholar
  34. Kammerer C. M., Gouin N., Samollow P. B., VandeBerg J. F., Hixson J. E., Cole S. A., et al. (2004). Two quantitative trait loci affect ACE activities in Mexican–Americans Hypertension 43:466–470CrossRefGoogle Scholar
  35. Kass R. E., Raftery A. E., (1995). Bayes factors Journal of American Statistical Association 90:773–795CrossRefGoogle Scholar
  36. Landerl K., (2001). Word recognition deficits in German: More evidence from a representative sample Dyslexia: An International Journal of Research & Practice 7:183–196CrossRefGoogle Scholar
  37. Landerl K., Wimmer H., (2002). Deficits in phoneme segmentation are not the core problem of dyslexia: Evidence from German and English children Applied Psycholinguistics 21:243–262CrossRefGoogle Scholar
  38. Leinonen S., Muller K., Leppanen P. H. T., Aro M., Ahonen T., Lyytinen H., (2001). Heterogeneity in adult dyslexic readers: Relating processing skills to the speed and accuracy of oral text reading Reading and Writing 14:265–296CrossRefGoogle Scholar
  39. Marino C., Giorda R., Vanzin L., Nobile M., Lorusso M. L., Baschirotto C., et al. (2004). A locus on 15q15–15qter influences dyslexia: Further support from a transmission/disequilibrium study in an Italian speaking population Journal of Medical Genetics 41:42–48CrossRefGoogle Scholar
  40. Marlow A. J., Fisher S. E., Francks C., MacPhie I. L., Cherny S. S., Richardson A. J., Talcott J. B., Stein J. F., Monaco A. P., Cardon L. R., (2003). Use of multivariate linkage analysis for dissection of a complex cognitive trait American Journal of Human Genetics 72:561–570CrossRefGoogle Scholar
  41. McPeek M. S., Sun L., (2000). Statistical tests for detaction of misspecified relationships by use of genome-screen data American Journal of Human Genetics 66:1076–1094CrossRefGoogle Scholar
  42. Meng H., Hager K., Held M., Page G. P., Olson R. K., Pennington B. F., et al. (2005). TDT-association analysis of EKN1 and dyslexia in a Colorado twin cohort Human Genetics 118:87–90CrossRefGoogle Scholar
  43. Meng H., Smith S. D., Hager K., Held M., Liu J., Olson R. K., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain Proceedings of the National Academy of Sciences of the United States of America 102:17053–17058CrossRefGoogle Scholar
  44. Nash M. W., Huezo-Diaz P., Williamson R. J., Sterne A., Purcell S., Hoda F., et al. (2004). Genome-wide linkage analysis of a composite index of neuroticism and mood-related scales in extreme selected sibships Human Molecular Genetics 13:2173–2182CrossRefGoogle Scholar
  45. Neuman R. J., Yuan B., Gerhard D. S., Liu K.-Y., Yue P., Duan S., et al. (2002). Replication of linkage of familial hypobetalipoproteinemia to chromosome 3p in six kindreds Journal of Lipid Research 43:407–415Google Scholar
  46. Paracchini S., (2005). Functional analysis of the risk haplotype for dyslexia on chromosome 6p22. SSSR Annual Meeting: Pre-conference, Toronto, CAGoogle Scholar
  47. Partnership for Child Development (2002). Heavy schistosomiasis associated with poor short-term memory and slower reaction times in Tanzanian school children. Tropical Medicine & International Health, 7, 104–117Google Scholar
  48. Petryshen T. L., Kaplan B. J., Hughes M. L., Tzenova J., Field L. L., (2002). Supportive evidence for the DYX3 dyslexia susceptibility gene in Canadian families Journal of Medical Genetics 39:125–126CrossRefGoogle Scholar
  49. Raskind W. H., Igo R. P. J., Chapman N. H., Berninger V. W., Thomson J. B., Matsushita M., et al. (2005). A genome scan in multigenerational families with dyslexia: Identification of a novel locus on chromosome 2q that contributes to phonological decoding efficiency Molecular Psychiatry 10:699–711CrossRefGoogle Scholar
  50. Rosner J., (1999). Test of auditory analysis skills. Academic Therapy Publications, Novato, CAGoogle Scholar
  51. Scerri T. S., Fisher S. E., Francks C., MacPhie I. L., Paracchini S., Richardson A. J., et al. (2004). Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK Journal of Medical Genetics 41:853–857CrossRefGoogle Scholar
  52. Schulte-Körne G., Grimm T., Nöthen M. M., Müller-Myhsok B., Cichon S., Vogt I. R., et al. (1998). Evidence for linkage of spelling disability to chromosome 15 American Journal of Human Genetics 63:279–282CrossRefGoogle Scholar
  53. Schumacher J., Anthoni H., Dahdouh F., König I. R., Hillmer H. M., Kluck N., et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia American Journal of Human Genetics 78:52–62CrossRefGoogle Scholar
  54. Seymour P. H. K., Aro M., Erskine J. M., (2003) Foundation literacy acquisition in European orthographies British Journal of Psychology 94:143–174CrossRefGoogle Scholar
  55. Smith S. D., Kimberling W. J., Pennington B. F., Lubs H. A., (1983). Specific reading disability: Identification of an inherited form through linkage analyses Science 219:1345–1347CrossRefGoogle Scholar
  56. Stanovich K. E., (1981). Relationships between word decoding speed, general name-retrieval ability, and reading progress in first-grade children Journal of Edcuational Psychology 73:809–815CrossRefGoogle Scholar
  57. Taipale M., Kaminen N., Nopola-Hemmi J., Haltia T., Myllyluoma B., Lyytinen H., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain Proceedings of the National Academy of Sciences of the United States of America 100:11553–11558CrossRefGoogle Scholar
  58. Wimmer H., (1996). The nonword reading deficit in developmental dyslexia: Evidence from children learning to read German Journal of Experimental Child Psychology 61:80–90CrossRefGoogle Scholar
  59. Zoccolotti P., de Luca M., di Pace E., Judica A., Orlandi M., Spinelli D., (1999). Markers of developmental surface dyslexia in a language (Italian) with high grapheme–phoneme correspondence Applied Psycholinguistics 20:191–216CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Elena L. Grigorenko
    • 1
    • 2
    • 3
    • 9
  • Adam Naples
    • 2
  • Joseph Chang
    • 4
  • Christina Romano
    • 1
  • Damaris Ngorosho
    • 5
  • Selemani Kungulilo
    • 6
  • Matthew Jukes
    • 7
    • 8
  • Donald Bundy
    • 8
  1. 1.Child Study CenterYale University Medical SchoolNew HavenUSA
  2. 2.Yale University PACE CenterNew HavenUSA
  3. 3.Department of PsychologyMoscow State UniversityMoscowRussia
  4. 4.Department of StatisticsYale UniversityNew HavenUSA
  5. 5.The Agency for the Development of Educational ManagementBagamoyoTanzania
  6. 6.Muhimbili University College of Health SciencesDar-es-SalaamTanzania
  7. 7.Department of Infectious Disease EpidemiologyImperial College, Partnership for Child DevelopmentLondonUK
  8. 8.Institute of Education, School of Lifelong Education and International DevelopmentUniversity of LondonLondonUK
  9. 9.Child Study CenterYale University Medical SchoolNew HavenUSA

Personalised recommendations