Synthesis, characterization and activity of Pd/CaWO4 catalyst in the complete oxidation of C1–C6 alkanes and toluene

Abstract

CaWO4 nanoparticles were successfully obtained by direct mechanochemical synthesis. In the search of new and advanced catalysts, the CaWO4 has been modified by Pd and characterized by various techniques such as: N2-physisorption, XRD, IR, TEM, XPS, TPR and TPD. The results from the instrumental methods confirmed that CaWO4 can be formed at room temperature in the course of 5 h milling time period. The XPS and TEM analysis reveal that the palladium is homogeneously dispersed and it is present on the surface of the Pd/CaWO4 in three oxidation states: Pd0, Pd2+ and Pd4+.The properties of the obtained material were investigated by the reactions of complete catalytic oxidation of different alkanes and toluene. The characterization data after test for 96 h showed no significant difference in average particle sizes of Pd-crystallites and the phase composition, which can be considered as an evidence for the significant stability of the obtained material. Therefore the Pd/CaWO4 can be considered as perspective material for use as an active phase in preparation of environmental catalysts.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Theres GS, Velayutham G, Krishnan PS, Shanthi K (2019) Synergistic impact of Ni–Cu hybrid oxides depositedon ordered mesoporous carbon scaffolds as non-noble catalyst for methanol oxidation. J Mater Sci 54:1502–1519. https://doi.org/10.1007/s10853-018-2884-1

    CAS  Article  Google Scholar 

  2. 2.

    Zhang C, Guo Y, Guo Y, Lu G, Boreave A, Retailleau L, Baylet A, Giroir-Fendler A (2014) LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Appl Catal B 148–149:490–498. https://doi.org/10.1016/j.apcatb.2013.11.030

    CAS  Article  Google Scholar 

  3. 3.

    Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ 140:117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031

    CAS  Article  Google Scholar 

  4. 4.

    Yang H, Deng J, Shaohua YL, Wu XZ, Dai H (2016) Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2–Al2O3 for toluene oxidation. J Mol Catal A 414:9–18. https://doi.org/10.1016/j.molcata.2015.12.010

    CAS  Article  Google Scholar 

  5. 5.

    Rimaz S, Luwei C, Kawi S, Borgna A (2019) Promoting effect of Ge on Pt-based catalysts for dehydrogenation of propane to propylene. Appl Catal A 588:117266. https://doi.org/10.1016/j.apcata.2019.117266

    CAS  Article  Google Scholar 

  6. 6.

    Joung HJ, Kim JH, Oh JS, You DW, Park HO, Jung KW (2014) Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl Surf Sci 290:267–273. https://doi.org/10.1016/j.apsusc.2013.11.066

    CAS  Article  Google Scholar 

  7. 7.

    Lihua Xiao L, Sun K, Xu X (2008) Catalytic combustion of methane over CeO2–MOx(M = La3+, Ca2+) solid solution promoted Pd/c-Al2O3 catalysts. Acta Phys Chim Sin 24:2108–2113. https://doi.org/10.1016/S1872-1508(08)60080-7

    Article  Google Scholar 

  8. 8.

    Baohua Y, Renxian Z, Yuejuan W, Xiaoming Z (2005) Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce–Zr/Al2O3 catalysts. Appl Catal A 295:31–39. https://doi.org/10.1016/j.apcata.2005.08.002

    CAS  Article  Google Scholar 

  9. 9.

    Arai H, Fukuzawa H (1995) Research and development on high temperature catalytic combustion. Catal Today 26:217–221. https://doi.org/10.1016/0920-5861(95)00142-8

    CAS  Article  Google Scholar 

  10. 10.

    Krzmanc MM, Logar M, Budic B, Suvorov D (2011) Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 scheelite ceramics. J Am Ceram Soc 94:2464–2472. https://doi.org/10.1111/j.1551-2916.2010.04378.x

    CAS  Article  Google Scholar 

  11. 11.

    Yoon SH, Choi GK, Kim DW, Cho SY, Hong KS (2007) Mixture behavior and microwave dielectric properties of (1–x)CaWO4–xTiO2. J Eur Ceram Soc 27:3087–3091. https://doi.org/10.1016/j.jeurceramsoc.2006.11.035

    CAS  Article  Google Scholar 

  12. 12.

    Khobragade N, Sinha E, Routa SK, Kar M (2013) Structural, optical and microwave dielectric properties of Sr1−xCaxWO4 ceramics prepared by the solid state reaction route. Ceram Int 39:9627–9635. https://doi.org/10.1016/j.ceramint.2013.05.084

    CAS  Article  Google Scholar 

  13. 13.

    Thongtem T, Phuruangrat A, Thongtem S (2008) Characterization of MeWO4 (Me = Ba, Sr and Ca) nanocrystallines prepared by sonochemical method. Appl Surf Sci 254:7581–7585. https://doi.org/10.1016/j.apsusc.2008.01.092

    CAS  Article  Google Scholar 

  14. 14.

    Cheng L, Liu P, Qu SX, Zhang HW (2013) Microwave dielectric properties of AWO4 (A = Ca, Ba, Sr) ceramics synthesized via high energy ball milling method. J Alloys Compd 581:553–557. https://doi.org/10.1016/j.jallcom.2013.06.133

    CAS  Article  Google Scholar 

  15. 15.

    Xiong FB, Lin HF, Wang LJ, Shen HX, Wang YP, Zhu WZ (2015) Luminescent properties of redlight-emitting phosphors CaWO4:Eu3+Li+ for near UV LED. Bull Mater Sci 38:1867–1873. https://doi.org/10.1007/s12034-015-1039-0

    CAS  Article  Google Scholar 

  16. 16.

    Zhu S-C, Xiao S, Ding J, Yang X, Qiang R (2008) Synthesis and photoluminescent properties of Eu3+-doped (1–x)CaO–xLi2O–WO3 phosphors. Mater Sci Eng B 150:95–98. https://doi.org/10.1016/j.mseb.2008.03.015

    CAS  Article  Google Scholar 

  17. 17.

    Lei F, Yan B (2008) Hydrothermal synthesis and luminescence of CaMO4: RE3+ (M ¼ W, Mo; RE¼Eu, Tb) submicro-phosphors. J Solid State Chem 181:855–862. https://doi.org/10.1016/j.jssc.2008.01.033

    CAS  Article  Google Scholar 

  18. 18.

    Cavalcante LS, Longo VM, Sczancoski JC et al (2012) Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. Cryst Eng Comm 14:853–868. https://doi.org/10.1039/C1CE05977G

    CAS  Article  Google Scholar 

  19. 19.

    Ningombam GS, Nongmaithem RS (2017) Morphology and photoluminescence of selfassembled CaWO4:Sm3+ microspheres: effect of pH and surfactant concentration. Int Nano Lett 7:133–140. https://doi.org/10.1007/s40089-017-0206-2

    CAS  Article  Google Scholar 

  20. 20.

    Xu W, Cui Y, Hu Y, Zheng L, Zhang Z, Cao W (2017) Optical temperature sensing in Er3+-Yb3+codoped CaWO4 and the laser induced heating effect on the luminescence intensity saturation. J Alloys Compd 726:547–555. https://doi.org/10.1016/j.jallcom.2017.08.007

    CAS  Article  Google Scholar 

  21. 21.

    Phuruangrat A, Thongtem T, Thongtem S (2010) Synthesis, characterization and photoluminescence of nanocrystalline calcium tungstate. J Exp Nanosci 5:263–270. https://doi.org/10.1080/17458080903513276

    CAS  Article  Google Scholar 

  22. 22.

    Moszynski M, Balcerzyk M, Czarnacki W, Nassalski A, Szczesniak T, Kraus H, Mikhailik VB, Solskii IM (2005) Characterization of CaWO4 scintillator at room and liquid nitrogen temperatures. Nucl Instrum Methods Phys Res A 553:578–591. https://doi.org/10.1016/j.nima.2005.07.052

    CAS  Article  Google Scholar 

  23. 23.

    Shan Z, Wang Y, Ding H, Huang F (2009) Structure-dependent photocatalytic activity of MWO4(M=Ca, Sr, Ba). J Mol Catal A 302:54–58. https://doi.org/10.1016/j.molcata.2008.11.030

    CAS  Article  Google Scholar 

  24. 24.

    da Silva ALD, Lima NA, Mesquita A, Probst LF et al (2018) Effect of different synthesis methods on the textural properties of calcium tungstate (CaWO4) and its catalytic properties in the toluene oxidation. Mater Res 21:2017096. https://doi.org/10.1590/1980-5373-mr-2017-0961

    CAS  Article  Google Scholar 

  25. 25.

    Oishi S, Hirao M (1989) Growth of CaWO4 whiskers from KCl flux. J Mater Sci Lett 8(12):1397–1398

    CAS  Article  Google Scholar 

  26. 26.

    Nagirnyi V, Feldbach E, Jönsson L, Kirm M, Lushchik A, Lushchik C et al (1998) Excitonic and recombination processes in CaWO4 and CdWO4 scintillators under synchrotron irradiation. Radiat Meas 29(3–4):247–250. https://doi.org/10.1016/S1350-4487(98)00017-1

    CAS  Article  Google Scholar 

  27. 27.

    Bourajoini H, Rautio AR, Kordas K, Mikkola JP (2016) Calcium manganese oxide catalysts for water oxidation: unravelling the influence of various synthesis strategies. Mater Res Bull 79:133–137. https://doi.org/10.1016/j.materresbull.2016.03.018

    CAS  Article  Google Scholar 

  28. 28.

    Watcharathamrongkul K, Jongsomjit B, Phisalaphong M (2010) Calcium oxide based catalysts for ethanolysis of soybean oil. Songklanakarin J Sci Technol 32:627–634

    CAS  Google Scholar 

  29. 29.

    de Lecea CS-M, Almela-Alarcón MA, Linares-Solano A (1990) Calcium-catalysed carbon gasification in CO2 and steam. Fuel 69:21–27. https://doi.org/10.1016/0016-2361(90)90253-M

    Article  Google Scholar 

  30. 30.

    Errandonea D, Manjón FJ (2008) Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Prog Mater Sci 53:711–773. https://doi.org/10.1016/j.optmat.2019.109562

    CAS  Article  Google Scholar 

  31. 31.

    Yektaa S, Sadeghi M, Babanezha E (2016) Synthesis of CaWO4 nanoparticles and its application for the adsorption-degradation of organophosphorus cyanophos. J Water Process Eng 14:19–27. https://doi.org/10.1016/j.jwpe.2016.10.004

    Article  Google Scholar 

  32. 32.

    Zhanga Z, Wang W, Jiang D, Xu J (2014) Synthesis of dumbbell-like Bi2WO6@CaWO4 composite photocatalyst and application in water treatment. Appl Surf Sci 292:948–953. https://doi.org/10.1016/j.apsusc.2013.12.084

    CAS  Article  Google Scholar 

  33. 33.

    Thongtema T, Kungwankunakorn S, Kuntalue B, Phuruangrat A, Thongtemc S (2010) Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature. J Alloys Compd 506:475–481. https://doi.org/10.1016/j.jallcom.2010.07.033

    CAS  Article  Google Scholar 

  34. 34.

    Katelnikovas A, Grigorjeva L, Millers D, Pankratov V, Kareiva A (2007) Sol-gel preparation of nanocrystalline CaWO4. Lith J Phys 47:63–68. https://doi.org/10.1002/pssb.200301412

    CAS  Article  Google Scholar 

  35. 35.

    Ramasamy P, Shahid RN, Scudino S, Eckert J, Stoica M (2017) Influencing the crystallization of Fe80Nb10B10 metallic glass by ball milling. J Alloys Compd 725:227–236. https://doi.org/10.1016/j.jallcom.2017.07.160

    CAS  Article  Google Scholar 

  36. 36.

    Dreizin EL, Schoenitz M (2017) Mechanochemically prepared reactive and energetic materials: a review. J Mater Sci 52:11789–11809. https://doi.org/10.1007/s10853-017-0912-1

    CAS  Article  Google Scholar 

  37. 37.

    Jiang JS, Yang XL, Gao L, Guo JK (2005) Nanostructured CuO–α-Fe2O3 solid solution obtained by high-energy ball milling. Mater Sci Eng A 392:179–183. https://doi.org/10.1016/j.msea.2004.09.026

    CAS  Article  Google Scholar 

  38. 38.

    Gancheva M, Iordanova R, Dimitriev Y, Nihtianova D, Stefanov P, Naydenov A (2013) Mechanochemical synthesis, characterization and catalytic activity of Bi2WO6 nanoparticles in CO, n-hexane and methane oxidation reactions. J Alloys Compd 570:34–40. https://doi.org/10.1016/j.jallcom.2013.03.157

    CAS  Article  Google Scholar 

  39. 39.

    Gancheva M, Naydenov A, Iordanova R, Nihtianova D, Stefanov P (2015) Mechanochemically assisted solid state synthesis, characterization and catalytic properties of MgWO4. J Mater Sci 50:515–520. https://doi.org/10.1007/s10853-015-8904-5

    CAS  Article  Google Scholar 

  40. 40.

    Gancheva M, Velinova R, Konova P, Stefanov P, Iordanova R, Naydenov A (2019) On the stabilization of the oxidized state of palladium by CuWO4 for application as catalyst in abatement of C1–C4 hydrocarbons emissions. Mater Res Express 6:085554. https://doi.org/10.1088/2053-1591/ab2933

    CAS  Article  Google Scholar 

  41. 41.

    Gomez-Serrano V, Gonzalez-Garcia C, Gonzalez-Martın M (2001) Nitrogen adsorption isotherms on carbonaceous materials, comparison of BET and Langmuir surfaceareas. Powder Technol 116:103–108. https://doi.org/10.1016/S0032-5910(00)00367-3

    CAS  Article  Google Scholar 

  42. 42.

    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press Inc., London

    Google Scholar 

  43. 43.

    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    CAS  Article  Google Scholar 

  44. 44.

    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. 5th Part A. Wiley, New York

  45. 45.

    Wu G, Wang Y, Zhu S, Wang J (2007) Preparation of ultrafine calcium carbonate particles with micropore dispersion method. Powder Technol 172:82–88. https://doi.org/10.1016/j.powtec.2006.10.031

    CAS  Article  Google Scholar 

  46. 46.

    Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M (1987) Infrared and Raman study of WO3 tungsten trioxides and WO3.xH2O tungsten trioxide tydrates. J Solid State Chem 67:235–247. https://doi.org/10.1016/0022-4596(87)90359-8

    CAS  Article  Google Scholar 

  47. 47.

    Veenas CL, Asitha LR, Bose VC, Raj ASA, Madhu G, Biju V (2015) Studies on the UV-visible and photoluminescent emission in nanocrystalline tungsten oxide. IOP Conf Ser Mater Sci Eng 73:012119–012224. https://doi.org/10.1088/1757-899X/73/1/012119

    CAS  Article  Google Scholar 

  48. 48.

    Frost RL, Duong L, Weier M (2004) Raman microscopy of selected tungstate minerals. Spectrochem Acta A 60:1853–1859. https://doi.org/10.1016/j.saa.2003.10.002

    CAS  Article  Google Scholar 

  49. 49.

    Hou Z, Li C, Yang J, Lian H, Yang P, Chai R, Chenga Z, Lin J (2009) One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties. J Mater Chem 19:2737–2746. https://doi.org/10.1039/B818810F

    CAS  Article  Google Scholar 

  50. 50.

    Wang S, Wang P, Li Z, Xiao C, Xiao B, Zhao R, Yang T, Zhang M (2014) Highly enhanced methanol gas sensing properties by Pd0.5Pd3O4 nanoparticle loaded ZnO. RSC Adv 4:35375–35382. https://doi.org/10.1039/c4ra05462h

    CAS  Article  Google Scholar 

  51. 51.

    Guo H, Lu J, Wu H, Xiao S, Han J (2013) Comparation of Cu-Co-Mn mixed oxides and hopcalite as support in synthesis of diphenyl carbonate by oxidative carbonylation of phenol. Adv Mater Res 750–752:287–1291

    Article  Google Scholar 

  52. 52.

    Yuan L, Yu J, Wang S, Huang K, Ren X, Sun Y, Wu X, Feng S (2015) UV–vis absorption shift of mixed valance state tungstate oxide: Ca0.72La0.28WO4. Mater Lett 143:212–214. https://doi.org/10.1016/j.matlet.2014.12.115

    CAS  Article  Google Scholar 

  53. 53.

    Ivanova AS, Slavinskaya EM, Gulyaev RV, Zaikovskii VI, Stonkus OA, Danilova IG, Plyasova LM, Polukhina IA, Boronin AI (2010) Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl Catal B 97:57–71. https://doi.org/10.1016/j.apcatb.2010.03.024

    CAS  Article  Google Scholar 

  54. 54.

    Otto K, Haack LP, deVries JE (1992) Identification of two types of oxidized palladium on γ-alumina by X-ray photoelectron spectroscopy. Appl Catal B 1:1–12. https://doi.org/10.1016/0926-3373(92)80003-I

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged to the European Regional Development Fund within the OP “Science and Education for Smart Growth 2014–2020” (Grant Number BG05M2OP001-1.001-0008-C03) and Bulgarian National Science Fund (Grant Number КП-06-H49/4).

Funding

This study was funded by Grant Number BG05M2OP001-1.001-0008-C03 and Grant Number КП-06-Н49/4.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ralitsa Georgieva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2202 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Georgieva, R., Gancheva, M., Ivanov, G. et al. Synthesis, characterization and activity of Pd/CaWO4 catalyst in the complete oxidation of C1–C6 alkanes and toluene. Reac Kinet Mech Cat (2021). https://doi.org/10.1007/s11144-021-01943-8

Download citation

Keywords

  • Mechanochemical synthesis
  • Pd/CaWO4
  • C1–C6 alkanes
  • Toluene