Investigation of the reaction mechanism of the hydrolysis of MgH2 in CoCl2 solutions under various kinetic conditions

Abstract

This paper reports kinetic investigation on dehydrogenation kinetics of magnesium hydride (MgH2) in aqueous solutions of cobalt chloride (CoCl2) under various conditions. For this aim, various CoCl2 solutions (2.5–10 wt%) as activator and hydrolysis temperatures (293–363 K) were tested for achieving active hydrogen production by breaking out passive surface. nucleation-growth and surface area approaches were used for investigation of dehydrogenation mechanism and samples characteristic features were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optimum activator concentration was determined as 6.25 wt% CoCl2 with fastest hydrogen production rate 18.55 mL min−1 g−1 with complete conversion of MgH2 to Mg(OH)2 at room temperature. The kinetic and thermodynamic assessments of dehydrogenation were deduced basing on power law kinetic models with Arrhenius and Eyring approaches. Experimental results dedicated that this approach provided practical and basic application for hydrogen generation by using macroscale MgH2 particles in presence of CoCl2 solution via inhibiting formation of passivation layer with 20 kJmol−1 apparent activation energy.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig.3
Fig. 4

References

  1. 1.

    Wang M, Chen L, Sun L (2012) Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ Sci 5:6763–6778. https://doi.org/10.1039/c2ee03309g

    CAS  Article  Google Scholar 

  2. 2.

    Huang Z, Autrey T (2012) Boron–nitrogen–hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy Environ Sci 5:9257. https://doi.org/10.1039/c2ee23039a

    CAS  Article  Google Scholar 

  3. 3.

    Sun Q, Zou M, Guo X et al (2015) A study of hydrogen generation by reaction of an activated Mg-CoCl2 (magnesium-cobalt chloride) composite with pure water for portable applications. Energy 79:310–314. https://doi.org/10.1016/j.energy.2014.11.016

    CAS  Article  Google Scholar 

  4. 4.

    Umegaki T, Xu Q, Kojima Y (2015) Porous materials for hydrolytic dehydrogenation of ammonia borane. Materials (Basel) 8:4512–4534. https://doi.org/10.3390/ma8074512

    CAS  Article  Google Scholar 

  5. 5.

    Liu Y, Wang X, Dong Z et al (2013) Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3. Energy 53:147–152. https://doi.org/10.1016/j.energy.2013.01.073

    CAS  Article  Google Scholar 

  6. 6.

    Fan MQ, Sun LX, Xu F (2010) Experiment assessment of hydrogen production from activated aluminum alloys in portable generator for fuel cell applications. Energy 35:2922–2926. https://doi.org/10.1016/j.energy.2010.03.023

    CAS  Article  Google Scholar 

  7. 7.

    Qiang FM, Xian SL, Xu F (2010) Feasibility study of hydrogen production for micro fuel cell from activated Al-In mixture in water. Energy 35:1333–1337. https://doi.org/10.1016/j.energy.2009.11.016

    CAS  Article  Google Scholar 

  8. 8.

    Öz Ç, Coşkuner Filiz B, Kantürk Figen A (2018) Talaş Magnezyum Atığından Hidrojen Gazı Üretimi ve Hız Profillerinin İncelenmesi. J Polytech 0900:681–684. https://doi.org/10.2339/politeknik.403972

    Article  Google Scholar 

  9. 9.

    Öz Ç, Coşkuner Filiz B, Kantürk Figen A (2017) The effect of vinegar–acetic acid solution on the hydrogen generation performance of mechanochemically modified Magnesium (Mg) granules. Energy 127:328–334. https://doi.org/10.1016/j.energy.2017.03.106

    CAS  Article  Google Scholar 

  10. 10.

    Kantürk Figen A, Coşkuner Filiz B (2015) Hydrogen production by the hydrolysis of milled waste magnesium scraps in nickel chloride solutions and nickel chloride added in Marmara Sea and Aegean Sea Water. Int J Hydrogen Energy 40:16169–16177. https://doi.org/10.1016/j.ijhydene.2015.07.170

    CAS  Article  Google Scholar 

  11. 11.

    Kantürk Figen A, Coşkuner B, Pişkin S (2015) Hydrogen generation from waste Mg based material in various saline solutions (NiCl2, CoCl2, CuCl2, FeCl3, MnCl2). Int J Hydrogen Energy 40:7483–7489. https://doi.org/10.1016/j.ijhydene.2015.01.022

    CAS  Article  Google Scholar 

  12. 12.

    Tegel M, Schöne S, Kieback B, Röntzsch L (2017) An efficient hydrolysis of MgH2-based materials. Int J Hydrogen Energy 42:2167–2176. https://doi.org/10.1016/j.ijhydene.2016.09.084

    CAS  Article  Google Scholar 

  13. 13.

    Chen J, Fu H, Xiong Y et al (2014) MgCl2 promoted hydrolysis of MgH2 nanoparticles for highly efficient H2 generation. Nano Energy 10:337–343. https://doi.org/10.1016/j.nanoen.2014.10.002

    CAS  Article  Google Scholar 

  14. 14.

    Ouyang LZ, Cao ZJ, Wang H et al (2014) Enhanced dehydriding thermodynamics and kinetics in Mg(In)-MgF2 composite directly synthesized by plasma milling. J Alloys Compd 586:113–117. https://doi.org/10.1016/j.jallcom.2013.10.029

    CAS  Article  Google Scholar 

  15. 15.

    Kadri A, Jia Y, Chen Z, Yao X (2015) Catalytically enhanced hydrogen sorption in Mg-MgH2 by coupling vanadium-based catalyst and carbon nanotubes. Materials (Basel) 8:3491–3507. https://doi.org/10.3390/ma8063491

    CAS  Article  Google Scholar 

  16. 16.

    Kantürk Figen A, Pişkin S (2014) Characterization and modification of waste magnesium chip utilized as an Mg-rich intermetallic composite. Particuology 17:158–164. https://doi.org/10.1016/j.partic.2014.01.005

    CAS  Article  Google Scholar 

  17. 17.

    Cho CY, Wang KH, Uan JY (2005) Evaluation of a new hydrogen generating system: Ni-rich magnesium alloy catalyzed by platinum wire in sodium chloride solutio. Mater Trans 46:2704–2708. https://doi.org/10.2320/matertrans.46.2704

    CAS  Article  Google Scholar 

  18. 18.

    Huang M, Ouyang L, Wang H et al (2015) Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing. Int J Hydrogen Energy 40:6145–6150. https://doi.org/10.1016/j.ijhydene.2015.03.058

    CAS  Article  Google Scholar 

  19. 19.

    Li B, Hao Y, Zhang B et al (2017) A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofibers. Appl Catal A Gen 531:1–12. https://doi.org/10.1016/j.apcata.2016.12.002

    CAS  Article  Google Scholar 

  20. 20.

    Demirci UB, Akdim O, Hannauer J et al (2010) Cobalt, a reactive metal in releasing hydrogen from sodium borohydride by hydrolysis: A short review and a research perspective. Sci China Chem 53:1870–1879. https://doi.org/10.1007/s11426-010-4081-1

    CAS  Article  Google Scholar 

  21. 21.

    Chen K, Ouyang L, Wang H et al (2020) A high-performance hydrogen generation system: Hydrolysis of LiBH4-based materials catalyzed by transition metal chlorides. Renew Energy 156:655–664. https://doi.org/10.1016/j.renene.2020.04.030

    CAS  Article  Google Scholar 

  22. 22.

    Coşkuner Filiz B, Kantürk Figen A, Pişkin S (2018) Dual combining transition metal hybrid nanoparticles for ammonia borane hydrolytic dehydrogenation. Appl Catal A Gen 550:320–330. https://doi.org/10.1016/j.apcata.2017.11.022

    CAS  Article  Google Scholar 

  23. 23.

    Akdim O, Demirci UB, Miele P (2009) More reactive cobalt chloride in the hydrolysis of sodium borohydride. Int J Hydrogen Energy 34:9444–9449. https://doi.org/10.1016/j.ijhydene.2009.09.085

    CAS  Article  Google Scholar 

  24. 24.

    Lente G (2015) Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks. Springer, New York

    Google Scholar 

  25. 25.

    Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  26. 26.

    Uribe E, Vega-Gálvez A, Di Scala K et al (2011) Characteristics of Convective Drying of Pepino Fruit (Solanum muricatum Ait.): Application of Weibull Distribution. Food Bioprocess Technol 4:1349–1356. https://doi.org/10.1007/s11947-009-0230-y

    Article  Google Scholar 

  27. 27.

    Hiraki T, Hiroi S, Akashi T et al (2012) Chemical equilibrium analysis for hydrolysis of magnesium hydride to generate hydrogen. Int J Hydrogen Energy 37:12114–12119. https://doi.org/10.1016/j.ijhydene.2012.06.012

    CAS  Article  Google Scholar 

  28. 28.

    Grosjean MH, Zidoune M, Roué L, Huot JY (2006) Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials. Int J Hydrogen Energy 31:109–119. https://doi.org/10.1016/j.ijhydene.2005.01.001

    CAS  Article  Google Scholar 

  29. 29.

    Ouyang LZ, Huang JM, Wang H et al (2013) Excellent hydrolysis performances of Mg3RE hydrides. Int J Hydrogen Energy 38:2973–2978. https://doi.org/10.1016/j.ijhydene.2012.12.092

    CAS  Article  Google Scholar 

  30. 30.

    Gan D, Liu Y, Zhang J et al (2018) Kinetic performance of hydrogen generation enhanced by AlCl3 via hydrolysis of MgH2 prepared by hydriding combustion synthesis. Int J Hydrogen Energy 43:10232–10239. https://doi.org/10.1016/j.ijhydene.2018.04.119

    CAS  Article  Google Scholar 

  31. 31.

    Coşkuner Filiz B, Kantürk Figen A, Pişkin S (2018) The remarkable role of metal promoters on the catalytic activity of Co-Cu based nanoparticles for boosting hydrogen evolution: Ammonia borane hydrolysis. Appl Catal B Environ 238:365–380. https://doi.org/10.1016/j.apcatb.2018.07.031

    CAS  Article  Google Scholar 

  32. 32.

    Muñoz M, Moreno S, Molina R (2012) Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method. Int J Hydrogen Energy 37:18827–18842. https://doi.org/10.1016/j.ijhydene.2012.09.132

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bilge Coşkuner Filiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 18307 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coşkuner Filiz, B. Investigation of the reaction mechanism of the hydrolysis of MgH2 in CoCl2 solutions under various kinetic conditions. Reac Kinet Mech Cat 132, 93–109 (2021). https://doi.org/10.1007/s11144-020-01923-4

Download citation

Keywords

  • Magnesium hydride
  • Hydrogen
  • Kinetic
  • Corrosive
  • Cobalt chloride