Copper-grafted Zagrousian natural asphalt sulfonate (Cu-Zagronas): as a novel heterogeneous carbonious nanocatalyst for the synthesis of anilines and phenols


In this study, taking into account the principles of green chemistry and extension of economical and industrials catalysts (as the heart of the chemical processes), copper-grafted zagrosian natural asphalt sulfonate (Cu-Zagronas) was synthesized, identified and introduced as a new efficient heterogeneous nanocatalyst for the synthesis of phenols and anilines. For preparation of the Cu-Zagronas nanocatalyst, we transform Iranian natural asphalt as a green, cheap and available mineral material into a support for organic transformations. The Cu-Zagronas nanocatalyst was characterized by various techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscope, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, X-ray diffraction, inductively coupled plasma and N2 adsorption–desorption measurement. Some advantages of this heterogeneous nanocatalyst include: simple preparation from commercially available materials, simple operation, high catalytic activity, high yields, easy work-up and recyclability of the catalyst up to 6 times without significant loss in catalytic activity.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Xue X, Zhao Z, Wang Y (2018) Org Chem Front 4:3585

    Article  Google Scholar 

  2. 2.

    Motahharifar N, Nasrollahzadeh M, Taheri-Kafrani A, Varma RS, Shokouhimehr M (2020) Carbohydr Polym 232:115819

    Article  Google Scholar 

  3. 3.

    Singhania A, Gupta SM (2018) Mater Res Express 1:946

    Google Scholar 

  4. 4.

    Latos P, Szelwicka A, Boncel S, Jurczyk S, Swadzba-Kwasny M, Chrobok A (2019) ACS Sustain Chem Eng 8:5184

    Article  Google Scholar 

  5. 5.

    Konwar LJ, Maki-Arvela P, Mikkola JP (2019) Chem Rev 119:11576

    CAS  Article  Google Scholar 

  6. 6.

    Fernandes RA, Sampaio MJ, Da Silva ES, Serp P, Farias JL, Silva CG (2019) Catal Today 15:286

    Article  Google Scholar 

  7. 7.

    Tokdemir E, Sakioglu E, Guzel A (2016) U.S. Patent. No. 15/115,072.

  8. 8.

    Abiola OS, Wilson R, Barnard A, Hattingh S, Kupolati WK, Odunfa SO (2019) Eng Technol 4:22

    Google Scholar 

  9. 9.

    Kane M, Edmondson V (2018) Wear 400:100

    Article  Google Scholar 

  10. 10.

    Kohzadi H, Soleiman- Beigi M (2020) New J Chem 44:12134

    CAS  Article  Google Scholar 

  11. 11.

    Falah S, Soleiman-Beigi M, Kohzadi H (2020) Appl Organomet Chem 34:e5840

    CAS  Article  Google Scholar 

  12. 12.

    Movassagh B, Soleiman-Beigi M (2009) Monatsh Chem 140:409

    CAS  Article  Google Scholar 

  13. 13.

    Soleiman-Beigi M, Arzehgar Z (2015) Heteroatom Chem 26:355

    CAS  Article  Google Scholar 

  14. 14.

    Roughley SD, Jordan AM (2011) J Med Chem 54:3451

    CAS  Article  Google Scholar 

  15. 15.

    Cooper TW, Campbell IB, Macdonald SJF (2010) Angew Chem Int Ed 49:8082

    CAS  Article  Google Scholar 

  16. 16.

    Buchwald SL, Mauger C, Mignani G, Scholz U (2006) Adv Synth Catal 348:23

    CAS  Article  Google Scholar 

  17. 17.

    Magano J, Dunetz JR (2011) Chem Rev 111:2177

    CAS  Article  Google Scholar 

  18. 18.

    Thaku KG, Sekar G (2011) ChemComm 23:6692

    Google Scholar 

  19. 19.

    Paul R, Ali MA, Punniyamurthy T (2010) Synthesis 24:4268

    Google Scholar 

  20. 20.

    Wu XF, Darcel C (2009) Eur J Org Chem 28:4753

    Article  Google Scholar 

  21. 21.

    Neetha M, Saranya S, Ann Harry N, Anilkumar G (2020) ChemistrySelect 5:736

    CAS  Article  Google Scholar 

  22. 22.

    Ghiasbeigi E, Soleiman-Beigi M (2019) ChemistrySelect 4:3611

    CAS  Article  Google Scholar 

  23. 23.

    Henam SD, Ahmad F, Shah MA, Parveen S, Wane AH (2019) Spectrochim Acta A 15:337

    Article  Google Scholar 

  24. 24.

    Reddy SK, Swamy B, Jayadevappa H (2012) Electrochim Acta 1:78

    Article  Google Scholar 

  25. 25.

    Borah R, Saikia E, Bora SJ, Chetia B (2017) Tetrahedron Lett 58:1211

    CAS  Article  Google Scholar 

  26. 26.

    Huang H, Wu Y, Zhang W, Feng C, Wang BQ, Cai WF, Hu P, Zhao KQ, Xiang SK (2017) J Org Chem 82:3094

    CAS  Article  Google Scholar 

  27. 27.

    Jin Z, Xu D, Pan Y, Xu Y, Chiang MYN (2001) Mol Struct 559:1

    CAS  Article  Google Scholar 

  28. 28.

    Sideri IK, Voutyritsa E, Kokotos CG (2018) Synlett 14:1324

    Google Scholar 

  29. 29.

    Xu HJ, Liang YF, Cai ZY, Qi HX, Yang CY, Feng YS (2011) Org Chem 76:2296

    CAS  Article  Google Scholar 

  30. 30.

    Molander GA, Cavalcanti LN (2010) J Org Chem 76:623

    Article  Google Scholar 

  31. 31.

    Xu J, Wang X, Shao C, Su D, Cheng D, Hu Y (2010) Org Lett 12:1964

    CAS  Article  Google Scholar 

  32. 32.

    Keenan CS, Murphree SS (2017) Synth Commun 47:1085

    CAS  Article  Google Scholar 

  33. 33.

    Wang AP, Li L (1992) Anal Chem 64:769

    CAS  Article  Google Scholar 

  34. 34.

    Maejima T, Shimoda Y, Nozaki K, Mori S, Sawama Y, Monguchi Y, Sajiki H (2012) Tetrahedron 68:1712

    CAS  Article  Google Scholar 

  35. 35.

    Aksenov AV, Lyakhovnenko AS, Kugutov MM (2011) Chem Heterocycl Compd 46:1262

    CAS  Article  Google Scholar 

  36. 36.

    Kim J, Chang S (2008) ChemComm 3052

  37. 37.

    Cheung CW, Surry DS, Buchwald SL (2013) Org Lett 15:3734

    CAS  Article  Google Scholar 

  38. 38.

    Jorgensen EC, Berteau PE (1971) J Med Chem 14:1199

    CAS  Article  Google Scholar 

Download references


We thank the Iranian National Science Foundation (INSF, Grant No. 97017223), and Ilam University for their financial support.

Author information



Corresponding author

Correspondence to Mohammad Soleiman-Beigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4842 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kohzadi, H., Soleiman-Beigi, M. Copper-grafted Zagrousian natural asphalt sulfonate (Cu-Zagronas): as a novel heterogeneous carbonious nanocatalyst for the synthesis of anilines and phenols. Reac Kinet Mech Cat 132, 261–277 (2021).

Download citation


  • Amines
  • Heterogeneous catalysis
  • Natural
  • Phenols