Abstract
The cyclohexane oxidation by H2O2 using VO(acac)2 as starting catalyst in the presence of oxalic acid (OA) was studied. The dissociation of OA and VO(oxalate) formed in situ by interaction of VO(acac)2 with OA is the essence of the electrical conductance G elevation (or vice versa 1/G dropping). As follows from the electronic and cyclic voltammetry spectra taken alongside 1/G, the substitution of weak field ligands (acac) of VO(acac)2 by the middle-field (oxalate) ones strengthens the cation-ligand bonds and postpone the irreversible catalyst oxidation. In the absence of OA, 1/G was several times larger than the value intrinsic to VO(acac)2 + OA mixture. The last feature corresponds with the considerable process productivity enhancement in presence of OA. The experimental part of this work was complemented with DFT calculation of the key quantum chemical characteristics as catalyst d-d-splitting, HOMO–LUMO gap and Gibbs energy. Bringing together the experimental and theoretical data led to deduce that the oxidation process efficiency relates, among others, with the modification the outer-sphere electronic configuration of metalocomplexes possibly leading to metal-peroxo species e.g. VO(η2-O2) generation. On the other hand, oxalate anions, besides decreasing 1/G, may facilitate the cations and H2O2 interaction. Mentioned peculiarities may be responsible for the noteworthy yield enhancement in the presence of OA.
Graphic abstract

This is a preview of subscription content, access via your institution.







References
- 1.
Kleespies ST, Oloo WN, Mukherjee A, Que L (2015) C-H Bond Cleavage by Bioinspired Nonheme Oxoiron(IV) Complexes. Including Hydroxylation of n-Butane Inorg Chem 54:5053–5064. https://doi.org/10.1021/ic502786y
- 2.
Biswas AN, Puri M, Meier KK, Oloo WN, Rohde GT, Bominaar EL, Münck E, Que L (2015) Modeling TauD-J: A High-Spin Nonheme Oxoiron(IV) Complex with High Reactivity toward C-H Bonds. J Am Chem Soc 137:2428–2431. https://doi.org/10.1021/ja511757j
- 3.
Serrano-Plana J, Oloo WN, Acosta-Rueda L, Meier KK, Verdejo B, García-España E, Basallote MG, Münck E, Que L, Company A, Costas M (2015) Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C—H Bonds with Stereoretention. J Am Chem Soc 137:15833–15842. https://doi.org/10.1021/jacs.5b09904
- 4.
Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421. https://doi.org/10.1039/B307853C
- 5.
Conte V, Coletti A, Mba M, Zonta C, Licini G (2011) Recent Advances in Vanadium Catalyzed Oxygen Transfer Reactions. Coord Chem Rev 255:2345–2357. https://doi.org/10.1016/j.ccr.2011.05.004
- 6.
Nelson DR (2005) Cytochrome P450: Structure, Mechanism, and Biochemistry Springer. New York. J. Am. Chem. Soc. 127(34):12147–12148. https://doi.org/10.1021/ja041050x
- 7.
Abu-Omar MM, Loaiza A, Hontzeas N (2005) Reaction Mechanisms of Mononuclear Non-Heme Iron Oxygenases. Chem Rev 105:2227–2252. https://doi.org/10.1021/cr040653o
- 8.
Grochowski E, Boleslawska T, Jurczak J (1977) Reaction of Diethyl Azodicarboxylate with Ethers in the Presence of N-Hydroxyimides as Catalysts. Synthesis 10:718–720. https://doi.org/10.1055/s-1977-24550
- 9.
Ishii Y, Sakaguchi S, Iwahama T (2001) Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions. Adv Synth Catal 343:393–427. https://doi.org/10.1002/1615-4169(20011231)343:8%3c809::AID-ADSC809%3e3.0.CO;2-1
- 10.
Recupero F, Punta C (2007) Free Radical Functionalization of Organic Compounds Catalyzed by N-Hydroxyphthalimide†. Chem Rev 107:3800–3842. https://doi.org/10.1021/cr040170k
- 11.
Galli C, Gentili P, Lanzalunga O (2008) Hydrogen Abstraction and Electron Transfer with Aminoxyl Radicals: Synthetic and Mechanistic Issues. Angew Chem Int Ed 47:4790–4796. https://doi.org/10.1002/anie.200704292
- 12.
Coseri S (2008) N-Hydroxyphthalimide (NHPI)/Lead Tetraacetate, a Peculiar System for the Phthalimide-N-Oxyl (PINO) Radical Generation. Mini-Rev Org Chem 5:222–227. https://doi.org/10.2174/157019308785161675
- 13.
Coseri S (2009) Phthalimide-N-oxyl (PINO) Radical, a Powerful Catalytic Agent: Its Generation and Versatility Towards Various Organic Substrates. Catal Rev 51(2):218–292. https://doi.org/10.1080/01614940902743841
- 14.
Punta C, Gambarotti C (2010) N-Hydroxy Derivatives: Key Organocatalysts for the Selective Free Radical Aerobic Oxidation of Organic Compounds. In Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry; Pignataro, B., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1:1–24. https://doi.org/10.1002/9783527630554.ch1
- 15.
Lee JM, Park EJ, Cho SH, Chang S (2008) Cu-Facilitated C−O Bond Formation Using N-Hydroxyphthalimide: Efficient and Selective Functionalization of Benzyl and Allylic C−H Bonds. J Amer Chem Soc 130:7824–7825. https://doi.org/10.1021/ja8031218
- 16.
Wertz S, Studer A (2013) Nitroxide-catalyzed transition-metal-free aerobic oxidation processes. Green Chem 15:3116–3134. https://doi.org/10.1039/C3GC41459K
- 17.
Shul’pin GB, (2013) C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst’s activity and selectivity. Dalton Trans 42:12794–12818. https://doi.org/10.1039/C3DT51004B
- 18.
Shul’pin GB, Kozlov YN, Shul’pina LS, Strelkova TV, Mandelli D (2010) Oxidation of Reactive Alcohols with Hydrogen Peroxide Catalyzed by Manganese Complexes. Catalysis Lett. 138:193–204. https://doi.org/10.1007/s10562-010-0398-9
- 19.
Shul’pin GB, Kozlov YN, Shul’pina LS, Pombeiro AJL (2012) Oxidation reactions catalyzed by osmium compounds. Part 4. Highly efficient oxidation of hydrocarbons and alcohols including glycerol by the H2O2/Os3(CO)12/pyridine reagent. Tetrahedron 68:8589–8599. https://doi.org/10.1039/C3RA41997E
- 20.
Pokutsa A, Kubaj Y, Zaborovskyi A, Maksym D, Muzart J, Sobkowiak A (2010) The effect of oxalic acid and glyoxal on the VO(acac)2-catalyzed cyclohexane oxidation with H2O2. Appl Catal A: General 390:190–194. https://doi.org/10.1016/j.apcata.2010.10.010
- 21.
Pokutsa A, Fliunt O, Kubaj Y, Paczesniak T, Blonarz P, Prystanskiy R, Muzart J, Makitra R, Zaborovskyi A, Sobkowiak A (2011) Relationships between the efficiency of cyclohexane oxidation and the electrochemical parameters of the reaction solution. J Molec Catal A: Chemical 347:15–21. https://doi.org/10.1016/j.molcata.2011.07.003
- 22.
Pokutsa A, Kubaj Y, Zaborovskyi A, Maksym D, Paczesniak T, Mysliwiec B, Bidzinska E, Muzart J, Sobkowiak A (2017) V(IV)-catalyzed cyclohexane oxygenation promoted by oxalic acid: mechanistic study. Molec Catal 434:194–205. https://doi.org/10.1016/j.mcat.2017.02.013
- 23.
Hess WT, Kroschwitz JI, Howe-Grant M (1995) Kirk-Othmer Encyclopedia of Chemical Technology. Chem Ing Tec 13:961. https://doi.org/10.1002/cite.330680721
- 24.
Pokutsa A, Bloniarz P, Fliunt O, Kubaj Y, Zaborovskyi A, Paczesniak T (2020) Sustainable oxidation of cyclohexane catalyzed by a VO(acac)2-oxalic acid tandem: the electrochemical motive of the process efficiency. RSC Adv 10:10959–10971. https://doi.org/10.1039/d0ra00495b
- 25.
NN Greenwood A Earnshaw 1997 Chemistry of the elements 2 Affiliations and Expertise University of Leeds, U. K N.N. Greenwood and A. Earnshaw Butterworth-Heinemann
- 26.
Rossotti FJC, Rossotti HS (1955) Studies on the Hydrolysis of Metal Ions. The Hydrolysis of the Vanadium (IV)ion. Acta Chem Scand 9:1177–1192. https://doi.org/10.3891/acta.chem.scand.09-1177
- 27.
Winkler JR, Gray HB (2012) Electronic Structures of Oxo-Metal Ions. Struct Bond. Springer-Verlag Berlin Heidelberg. 142:17–28. ISBN 978–3–642–27370–4
- 28.
Augusto O, Miyamoto S (2011) Chapter II: “Oxygen radicals and related species”, in: K. Pantopoulos, H.M. Schipper (Eds.). Principles of Free Radical Biomedicine. Vol 1. Nova Science Publishers. ISBN: 978–1–61209–773–2
- 29.
Wardman P (1989) Reduction Potentials of One Electron Couples Involving Free Radicals in Aqueous Solution. J Phys Chem Ref Data 18:1637–1755. https://doi.org/10.1063/1.555843
- 30.
Kitamura M, Yamashita K, Imai H (1976) Studies on the electrode processes of oxovanadium (IV). II. Electrolytic reduction of vanadyl acetylacetonate in acetonitrile solution at mercury electrode. Bull Chem Soc Jpn 49:97–100
- 31.
Nawi MA, Reichel TS (1981) Electrochemical studies of vanadium(III) and vanadium(IV) acetylacetonate complexes in dimethylsulfoxide. Inorg Chem 20:1974–1978. https://doi.org/10.1021/ic50221a006
- 32.
Cho KB, Wu X, Lee YM, Kwon YH, Shaik S, NamW, (2012) Evidence for an alternative to the oxygen rebound mechanism in C-H bond activation by non-heme Fe(IV)O complexes. J Am Chem Soc 134:20222–20225. https://doi.org/10.1021/ja308290r
- 33.
Schläfer HL, Gliemann G (1969) Basic Principles of Ligand Field Theory. Wiley Interscience, New York. https://doi.org/10.1016/0022-2860(72)85237-2
- 34.
The charge-to-radius ratio for acac‒1 and oxalate‒2 ligands was defined as ‒1/3.237 = ‒0.309 Å‒1 and ‒2/1.762 = ‒1.135 Å‒1, where 3.237 and 1.762, Å - the molecular radius of respective ligands due to DFT calculation.
- 35.
The d-d-splitting values were calculated as Δ = Eact = hc/λabsmax, where h – Plank constant (6.626×10‒34 J s); c – rate of light (3×108 m); λabsmax – the character wavelength band of absorbance maximum equal 690×10‒9 m and 350×10‒9 m for VO(acac)2 and VO(oxalate)2, respectively.
- 36.
Oughtred RE (1973) The determination of the crystal structure of diammonium vanadyl oxalate dihydrat. Durham theses. Durham University. http://etheses.dur.ac.uk/10060/
- 37.
Zhou Z, Parr RG (1990) Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720–5724. https://doi.org/10.1021/ja00171a007
- 38.
IN Levine 2000 Quantum Chemistry 5 Prentice Hall. Englewood Cliffs NJ 10: 0136855121
- 39.
Becke AD (1996) Density functional thermochemistry IV A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. Doi 10(1063/1):470829
Acknowledgements
Authors are indebted to Prof Andrzej Sobkowiak (Rzeszow University of Technology) for numerous comments, guidance and courtesy which were essential to accomplish of this research. AP particularly thanks Mrs Yuliya Kubaj for the participation in impedance spectroscopy experiments as well as Dr Orest Fliunt for the guidance and numerous consultations by the impedance spectroscopy application.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Pokutsa, A., Zaborovsky, A., Bloniarz, P. et al. Cyclohexane oxidation: relationships of the process efficiency with electrical conductance, electronic and cyclic voltammetry spectra of the reaction mixture. Reac Kinet Mech Cat 132, 123–137 (2021). https://doi.org/10.1007/s11144-020-01913-6
Received:
Accepted:
Published:
Issue Date:
Keywords
- Cyclohexane oxidation
- Vanadyl(iv)acetylacetonate
- Oxalic acid
- Electric conductance
- UV–vis and cyclic voltammetry
- DFT modelling