Cyclohexane oxidation: relationships of the process efficiency with electrical conductance, electronic and cyclic voltammetry spectra of the reaction mixture

Abstract

The cyclohexane oxidation by H2O2 using VO(acac)2 as starting catalyst in the presence of oxalic acid (OA) was studied. The dissociation of OA and VO(oxalate) formed in situ by interaction of VO(acac)2 with OA is the essence of the electrical conductance G elevation (or vice versa 1/G dropping). As follows from the electronic and cyclic voltammetry spectra taken alongside 1/G, the substitution of weak field ligands (acac) of VO(acac)2 by the middle-field (oxalate) ones strengthens the cation-ligand bonds and postpone the irreversible catalyst oxidation. In the absence of OA, 1/G was several times larger than the value intrinsic to VO(acac)2 + OA mixture. The last feature corresponds with the considerable process productivity enhancement in presence of OA. The experimental part of this work was complemented with DFT calculation of the key quantum chemical characteristics as catalyst d-d-splitting, HOMO–LUMO gap and Gibbs energy. Bringing together the experimental and theoretical data led to deduce that the oxidation process efficiency relates, among others, with the modification the outer-sphere electronic configuration of metalocomplexes possibly leading to metal-peroxo species e.g. VO(η2-O2) generation. On the other hand, oxalate anions, besides decreasing 1/G, may facilitate the cations and H2O2 interaction. Mentioned peculiarities may be responsible for the noteworthy yield enhancement in the presence of OA.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Kleespies ST, Oloo WN, Mukherjee A, Que L (2015) C-H Bond Cleavage by Bioinspired Nonheme Oxoiron(IV) Complexes. Including Hydroxylation of n-Butane Inorg Chem 54:5053–5064. https://doi.org/10.1021/ic502786y

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Biswas AN, Puri M, Meier KK, Oloo WN, Rohde GT, Bominaar EL, Münck E, Que L (2015) Modeling TauD-J: A High-Spin Nonheme Oxoiron(IV) Complex with High Reactivity toward C-H Bonds. J Am Chem Soc 137:2428–2431. https://doi.org/10.1021/ja511757j

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Serrano-Plana J, Oloo WN, Acosta-Rueda L, Meier KK, Verdejo B, García-España E, Basallote MG, Münck E, Que L, Company A, Costas M (2015) Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C—H Bonds with Stereoretention. J Am Chem Soc 137:15833–15842. https://doi.org/10.1021/jacs.5b09904

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421. https://doi.org/10.1039/B307853C

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Conte V, Coletti A, Mba M, Zonta C, Licini G (2011) Recent Advances in Vanadium Catalyzed Oxygen Transfer Reactions. Coord Chem Rev 255:2345–2357. https://doi.org/10.1016/j.ccr.2011.05.004

    CAS  Article  Google Scholar 

  6. 6.

    Nelson DR (2005) Cytochrome P450: Structure, Mechanism, and Biochemistry Springer. New York. J. Am. Chem. Soc. 127(34):12147–12148. https://doi.org/10.1021/ja041050x

    CAS  Article  Google Scholar 

  7. 7.

    Abu-Omar MM, Loaiza A, Hontzeas N (2005) Reaction Mechanisms of Mononuclear Non-Heme Iron Oxygenases. Chem Rev 105:2227–2252. https://doi.org/10.1021/cr040653o

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Grochowski E, Boleslawska T, Jurczak J (1977) Reaction of Diethyl Azodicarboxylate with Ethers in the Presence of N-Hydroxyimides as Catalysts. Synthesis 10:718–720. https://doi.org/10.1055/s-1977-24550

    Article  Google Scholar 

  9. 9.

    Ishii Y, Sakaguchi S, Iwahama T (2001) Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions. Adv Synth Catal 343:393–427. https://doi.org/10.1002/1615-4169(20011231)343:8%3c809::AID-ADSC809%3e3.0.CO;2-1

    CAS  Article  Google Scholar 

  10. 10.

    Recupero F, Punta C (2007) Free Radical Functionalization of Organic Compounds Catalyzed by N-Hydroxyphthalimide†. Chem Rev 107:3800–3842. https://doi.org/10.1021/cr040170k

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Galli C, Gentili P, Lanzalunga O (2008) Hydrogen Abstraction and Electron Transfer with Aminoxyl Radicals: Synthetic and Mechanistic Issues. Angew Chem Int Ed 47:4790–4796. https://doi.org/10.1002/anie.200704292

    CAS  Article  Google Scholar 

  12. 12.

    Coseri S (2008) N-Hydroxyphthalimide (NHPI)/Lead Tetraacetate, a Peculiar System for the Phthalimide-N-Oxyl (PINO) Radical Generation. Mini-Rev Org Chem 5:222–227. https://doi.org/10.2174/157019308785161675

    CAS  Article  Google Scholar 

  13. 13.

    Coseri S (2009) Phthalimide-N-oxyl (PINO) Radical, a Powerful Catalytic Agent: Its Generation and Versatility Towards Various Organic Substrates. Catal Rev 51(2):218–292. https://doi.org/10.1080/01614940902743841

    CAS  Article  Google Scholar 

  14. 14.

    Punta C, Gambarotti C (2010) N-Hydroxy Derivatives: Key Organocatalysts for the Selective Free Radical Aerobic Oxidation of Organic Compounds. In Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry; Pignataro, B., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1:1–24. https://doi.org/10.1002/9783527630554.ch1

    Article  Google Scholar 

  15. 15.

    Lee JM, Park EJ, Cho SH, Chang S (2008) Cu-Facilitated C−O Bond Formation Using N-Hydroxyphthalimide: Efficient and Selective Functionalization of Benzyl and Allylic C−H Bonds. J Amer Chem Soc 130:7824–7825. https://doi.org/10.1021/ja8031218

    CAS  Article  Google Scholar 

  16. 16.

    Wertz S, Studer A (2013) Nitroxide-catalyzed transition-metal-free aerobic oxidation processes. Green Chem 15:3116–3134. https://doi.org/10.1039/C3GC41459K

    CAS  Article  Google Scholar 

  17. 17.

    Shul’pin GB, (2013) C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst’s activity and selectivity. Dalton Trans 42:12794–12818. https://doi.org/10.1039/C3DT51004B

    Article  Google Scholar 

  18. 18.

    Shul’pin GB, Kozlov YN, Shul’pina LS, Strelkova TV, Mandelli D (2010) Oxidation of Reactive Alcohols with Hydrogen Peroxide Catalyzed by Manganese Complexes. Catalysis Lett. 138:193–204. https://doi.org/10.1007/s10562-010-0398-9

    CAS  Article  Google Scholar 

  19. 19.

    Shul’pin GB, Kozlov YN, Shul’pina LS, Pombeiro AJL (2012) Oxidation reactions catalyzed by osmium compounds. Part 4. Highly efficient oxidation of hydrocarbons and alcohols including glycerol by the H2O2/Os3(CO)12/pyridine reagent. Tetrahedron 68:8589–8599. https://doi.org/10.1039/C3RA41997E

    Article  Google Scholar 

  20. 20.

    Pokutsa A, Kubaj Y, Zaborovskyi A, Maksym D, Muzart J, Sobkowiak A (2010) The effect of oxalic acid and glyoxal on the VO(acac)2-catalyzed cyclohexane oxidation with H2O2. Appl Catal A: General 390:190–194. https://doi.org/10.1016/j.apcata.2010.10.010

    CAS  Article  Google Scholar 

  21. 21.

    Pokutsa A, Fliunt O, Kubaj Y, Paczesniak T, Blonarz P, Prystanskiy R, Muzart J, Makitra R, Zaborovskyi A, Sobkowiak A (2011) Relationships between the efficiency of cyclohexane oxidation and the electrochemical parameters of the reaction solution. J Molec Catal A: Chemical 347:15–21. https://doi.org/10.1016/j.molcata.2011.07.003

    CAS  Article  Google Scholar 

  22. 22.

    Pokutsa A, Kubaj Y, Zaborovskyi A, Maksym D, Paczesniak T, Mysliwiec B, Bidzinska E, Muzart J, Sobkowiak A (2017) V(IV)-catalyzed cyclohexane oxygenation promoted by oxalic acid: mechanistic study. Molec Catal 434:194–205. https://doi.org/10.1016/j.mcat.2017.02.013

    CAS  Article  Google Scholar 

  23. 23.

    Hess WT, Kroschwitz JI, Howe-Grant M (1995) Kirk-Othmer Encyclopedia of Chemical Technology. Chem Ing Tec 13:961. https://doi.org/10.1002/cite.330680721

    Article  Google Scholar 

  24. 24.

    Pokutsa A, Bloniarz P, Fliunt O, Kubaj Y, Zaborovskyi A, Paczesniak T (2020) Sustainable oxidation of cyclohexane catalyzed by a VO(acac)2-oxalic acid tandem: the electrochemical motive of the process efficiency. RSC Adv 10:10959–10971. https://doi.org/10.1039/d0ra00495b

    CAS  Article  Google Scholar 

  25. 25.

    NN Greenwood A Earnshaw 1997 Chemistry of the elements 2 Affiliations and Expertise University of Leeds, U. K N.N. Greenwood and A. Earnshaw Butterworth-Heinemann

  26. 26.

    Rossotti FJC, Rossotti HS (1955) Studies on the Hydrolysis of Metal Ions. The Hydrolysis of the Vanadium (IV)ion. Acta Chem Scand 9:1177–1192. https://doi.org/10.3891/acta.chem.scand.09-1177

    CAS  Article  Google Scholar 

  27. 27.

    Winkler JR, Gray HB (2012) Electronic Structures of Oxo-Metal Ions. Struct Bond. Springer-Verlag Berlin Heidelberg. 142:17–28. ISBN 978–3–642–27370–4

  28. 28.

    Augusto O, Miyamoto S (2011) Chapter II: “Oxygen radicals and related species”, in: K. Pantopoulos, H.M. Schipper (Eds.). Principles of Free Radical Biomedicine. Vol 1. Nova Science Publishers. ISBN: 978–1–61209–773–2

  29. 29.

    Wardman P (1989) Reduction Potentials of One Electron Couples Involving Free Radicals in Aqueous Solution. J Phys Chem Ref Data 18:1637–1755. https://doi.org/10.1063/1.555843

    CAS  Article  Google Scholar 

  30. 30.

    Kitamura M, Yamashita K, Imai H (1976) Studies on the electrode processes of oxovanadium (IV). II. Electrolytic reduction of vanadyl acetylacetonate in acetonitrile solution at mercury electrode. Bull Chem Soc Jpn 49:97–100

    CAS  Article  Google Scholar 

  31. 31.

    Nawi MA, Reichel TS (1981) Electrochemical studies of vanadium(III) and vanadium(IV) acetylacetonate complexes in dimethylsulfoxide. Inorg Chem 20:1974–1978. https://doi.org/10.1021/ic50221a006

    CAS  Article  Google Scholar 

  32. 32.

    Cho KB, Wu X, Lee YM, Kwon YH, Shaik S, NamW, (2012) Evidence for an alternative to the oxygen rebound mechanism in C-H bond activation by non-heme Fe(IV)O complexes. J Am Chem Soc 134:20222–20225. https://doi.org/10.1021/ja308290r

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Schläfer HL, Gliemann G (1969) Basic Principles of Ligand Field Theory. Wiley Interscience, New York. https://doi.org/10.1016/0022-2860(72)85237-2

    Google Scholar 

  34. 34.

    The charge-to-radius ratio for acac‒1 and oxalate‒2 ligands was defined as ‒1/3.237 = ‒0.309 Å‒1 and ‒2/1.762 = ‒1.135 Å‒1, where 3.237 and 1.762, Å - the molecular radius of respective ligands due to DFT calculation.

  35. 35.

    The d-d-splitting values were calculated as Δ = Eact = hcabsmax, where h – Plank constant (6.626×10‒34 J s); c – rate of light (3×108 m); λabsmax – the character wavelength band of absorbance maximum equal 690×10‒9 m and 350×10‒9 m for VO(acac)2 and VO(oxalate)2, respectively.

  36. 36.

    Oughtred RE (1973) The determination of the crystal structure of diammonium vanadyl oxalate dihydrat. Durham theses. Durham University. http://etheses.dur.ac.uk/10060/

  37. 37.

    Zhou Z, Parr RG (1990) Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720–5724. https://doi.org/10.1021/ja00171a007

    CAS  Article  Google Scholar 

  38. 38.

    IN Levine 2000 Quantum Chemistry 5 Prentice Hall. Englewood Cliffs NJ 10: 0136855121

  39. 39.

    Becke AD (1996) Density functional thermochemistry IV A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. Doi 10(1063/1):470829

    Google Scholar 

Download references

Acknowledgements

Authors are indebted to Prof Andrzej Sobkowiak (Rzeszow University of Technology) for numerous comments, guidance and courtesy which were essential to accomplish of this research. AP particularly thanks Mrs Yuliya Kubaj for the participation in impedance spectroscopy experiments as well as Dr Orest Fliunt for the guidance and numerous consultations by the impedance spectroscopy application.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Pokutsa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 383 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pokutsa, A., Zaborovsky, A., Bloniarz, P. et al. Cyclohexane oxidation: relationships of the process efficiency with electrical conductance, electronic and cyclic voltammetry spectra of the reaction mixture. Reac Kinet Mech Cat 132, 123–137 (2021). https://doi.org/10.1007/s11144-020-01913-6

Download citation

Keywords

  • Cyclohexane oxidation
  • Vanadyl(iv)acetylacetonate
  • Oxalic acid
  • Electric conductance
  • UV–vis and cyclic voltammetry
  • DFT modelling