Improvement in the hydrodesulfurization of dibenzothiophene over supported NiMoW catalysts

Abstract

Various supported NiMoW sulfided catalysts were synthetized and tested in the hydrodesulfurization (HDS) of dibenzothiophene (DBT). The influence of cetyl trimethyl ammonium bromide (CTAB) on the properties of titania, silica and Si–Ti mixed oxide, prepared by sol–gel and used as supports, was evaluated. The active metals were then sequentially co-impregnated on the carrier. For all catalysts, the Ni/[Ni(MoW)] and Mo/W atomic ratios were kept constant and equal to 0.5 and 1, respectively. In addition, the total metal content was 18 wt% for each sample. All catalysts were characterized by BET, TEM, XRD and UV–Vis. The use of CTAB as a surfactant influences the textural properties of the supports. Among the studied samples, the best catalyst was NiMoW/Si–Ti, which showed a DBT conversion of 94% after 5 h of reaction at 320 °C and 5.3 MPa. For comparison, a commercial NiMo/Al2O3 catalyst was used as a reference.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    López-Mendoza MA, Nava R, Peza-Ledesma C, Millán-Malo B, Huirache-Acuña R, Skewes P, Rivera-Muñoz EM (2016) Catal Today 271:114–126

    Article  Google Scholar 

  2. 2.

    Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153:1–68

    CAS  Article  Google Scholar 

  3. 3.

    La Parola V, Dragoi B, Ungureanu A, Dumitriu E, Venezia AM (2010) Appl Catal A 386:43–50

    Article  Google Scholar 

  4. 4.

    van Haandel L, Bremmer M, Kooyman PJ, van Veen JAR, Weber T, Hensen EJM (2015) ACS Catal 5:7276–7287

    Article  Google Scholar 

  5. 5.

    Klimova TE, Valencia D, Mendoza-Nieto JA, Hernández-Hipólito P (2013) J Catal 304:29–46

    CAS  Article  Google Scholar 

  6. 6.

    Calderón-Magdaleno MA, Mendoza-Nieto JA, Klimova TE (2014) Catal Today 220–222:78–88

    Article  Google Scholar 

  7. 7.

    Sharma G, Kumar D, Kumar A, Al-Muhtaseb AH, Pathania D, Naushad M, Mola GT (2017) Mater Sci Eng C 71:1216–1230

    CAS  Article  Google Scholar 

  8. 8.

    Huirache-Acuña R, Alonso-Nuñez G, Rivera-Muñoz EM, Gutierrez O, Pawelec B (2016). In: Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering; Trimetallic sulfide catalysts for hydrodesulfurization. Saleh TA (ed), IGI Global book series ACME, (pp. 240-262).

    Google Scholar 

  9. 9.

    Liu D, Wang A, Lui C, Prins R (2016) Catal Commun 77:13–17

    CAS  Article  Google Scholar 

  10. 10.

    Vít Z, Gulková D, Kaluža L, Kupčík J (2015) Appl Catal B Environ 179:44–53

    Article  Google Scholar 

  11. 11.

    Xu J, Huang T, Fan Y (2017) Appl Catal B Environ 203:839–850

    CAS  Article  Google Scholar 

  12. 12.

    Mendoza-Nieto JA, Robles-Méndez F, Klimova TE (2019) Catal Today 250:47–59

    Article  Google Scholar 

  13. 13.

    Wei Q, Li Y, Zhang T, Tao X, Zhou Y, Chung K, Xu C (2014) Energy Fuels 28:7343–7351

    CAS  Article  Google Scholar 

  14. 14.

    Gómez-Orozco SY, Huirache-Acuña R, Pawelec B, Fierro JLG, Rivera- Muñoz EM, Lara-Romero J, Alonso-Nuñez G (2018) Catal Today 305:152–161

    Article  Google Scholar 

  15. 15.

    Ramos MA, Chianelli R, Enriquez-Carrejo JL, González GA, Berhault G (2014) Comput Mater Sci 84:18–22

    CAS  Article  Google Scholar 

  16. 16.

    Hao LS, Jia YF, Liu Q, Wang Y, Xu GY, Nan YQ (2016) Colloid Surf A 511:91–104

    CAS  Article  Google Scholar 

  17. 17.

    Hao C, Wang J, Chen Q, Bai Y, Wang X, Yang Y (2017) J Photochem Photobiol A 332:384–390

    CAS  Article  Google Scholar 

  18. 18.

    Park JW, Jung DS, Seo ME, Kim SY, Moon WJ, Shin CH, Seo G (2008) Microporous Mesoporous Mater 112:458–466

    CAS  Article  Google Scholar 

  19. 19.

    Abo-Riya M, Tantawy AH, El-Dougdoug W (2016) J Mol Liq 221:642–650

    CAS  Article  Google Scholar 

  20. 20.

    Zheng H, Guo W, Li S, Yin R, Wu Q, Feng X, Ren N, Chang JS (2017) Catal Commun 88:68–72

    CAS  Article  Google Scholar 

  21. 21.

    Cervantes-Gaxiola ME, Arroyo-Albiter M, Pérez-Larios A, Balbuena PB, Espino-Valencia J (2013) Fuel 113:733–743

    CAS  Article  Google Scholar 

  22. 22.

    Chao L, Zhiming Z, Yongli H, Zhenmin C, Weikang Y (2014) Chin J Chem Eng 22:383–391

    Article  Google Scholar 

  23. 23.

    Huirache-Acuña R, Alonso-Nuñez G, Paraguay-Delgado F, Lara-Romero J, Rivera-Muñoz EM (2015) Catal Today 250:28–37

    Article  Google Scholar 

  24. 24.

    Cruz-Pérez AE, Torrez Jiménez Y, Velasco Alejo JJ, Zepeda TA, Frías Márquez DM, Rivera Ruedas MG, Fuentes S, Díaz de León JN (2016) Catal Today 271:28–34

    Article  Google Scholar 

  25. 25.

    Huirache-Acuña R, Zepeda TA, Rivera-Muñoz EM, Nava R, Loricera CV, Pawelec B (2015) Fuel 149:149–161

    Article  Google Scholar 

  26. 26.

    Shee D, Mitra B, Chary KVR, Deo G (2018) Mol Catal 451:228–237

    CAS  Article  Google Scholar 

  27. 27.

    Almeida LD, Rocha ALA, Rodrigues TS, Robles-Azocar PA (2020) Catal Today 344:158–165

    CAS  Article  Google Scholar 

  28. 28.

    Lozano-Hernández G, Lozada-Ascencio EM, Guevara-Lara A (2006) Rev Mex Ing Quim 5:311–320

    Google Scholar 

  29. 29.

    Banerjee T, Chattopadhyay AK (2014) Surf Coat Technol 258:849–860

    CAS  Article  Google Scholar 

  30. 30.

    Vázquez-Garrido I, López-Benítez A, Berhault G, Guevarra-Lara A (2019) Fuel 236:55–64

    Article  Google Scholar 

  31. 31.

    Polanco-Gonzalez J, Carranco-Rodríguez JA, Enríquez-Carrejo JL, Mani-Gonzalez PG, Domínguez-Esquivel JM, Ramos M (2017) Materials 10:147

    Article  Google Scholar 

  32. 32.

    Zepeda TA, Pawelec B, Obeso-Estrella R, Díaz de León JN, Fuentes S, Alonso-Nuñez G, Fierro JLG (2016) Appl Catal B Environ 180:569–579

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT (392023). The authors also acknowledge Ignacio Becerril Juárez, Hector Silva Pereyra, Beatriz Rivera Escoto, Ana Peña Maldonado, Charlie Ponce Rangel and Lucia Aldana Navarro, for their expert technical assistance. Manuel Arroyo Albiter and Isaac Pineda Carbajal (UMSNH), Jose Antonio Toledo (IMP), the LINAN, the IPICYT, CNyN-UNAM, the University of Guanajuato and the UMSNH-FIQ for providing laboratory support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Avalos-Borja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 245 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gallegos-Hernández, A.Y., Martínez-Rosales, M., Rico, J.L. et al. Improvement in the hydrodesulfurization of dibenzothiophene over supported NiMoW catalysts. Reac Kinet Mech Cat 132, 317–330 (2021). https://doi.org/10.1007/s11144-020-01909-2

Download citation

Keywords

  • Hydrodesulfurization of dibenzothiophene
  • Supported NiMoW catalysts