CuO/MnOx composites obtained from Mn-MIL-100 precursors as efficient catalysts for the catalytic combustion of chlorobenzene


A series of CuO/MnOx composites has been synthesized by integrating the incipient wetness impregnation method and the heat treatment of Mn-MIL-100. The catalytic activity has been tested by chlorobenzene (CB) degradation. The obtained catalysts were characterized by XRD, Raman, TG, TEM, XPS, N2 adsorption–desorption, H2-TPR and TPSR-MS. The results revealed that the catalytic activity of MnOx improved remarkably after loading Cu, particularly the catalyst with 30 wt.% CuO (30Cu/MnOx) exhibited the best catalytic activity in CB combustion, whose T90% was 290 °C at GHSV of 15,000 h−1. The excellent catalytic performance of 30Cu/MnOx could be attributed to the abundant mesoporous structure, improved reducibility, surface-enriched Mn4+ species and active adsorbed oxygen species. Moreover, the TPSR-MS data showed that 30Cu/MnOx exhibited higher dechlorination ability and better resistance to chlorine poisoning during CB degradation process. This study may provide a new strategy for developing mixed metal oxides derived from MOF serving as high-performance catalysts in the catalytic combustion removal of VOCs.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Gentner DR, Harley RA, Miller AM, Goldstein AH (2009) Environ Sci Technol 43:4247–4252

    CAS  PubMed  Google Scholar 

  2. 2.

    Li J, Shi YJ, Fu XH, Huang JY, Zhang YP, Deng S, Zhang F (2019) Reac Kinet Mech Cat 128:289–314

    CAS  Google Scholar 

  3. 3.

    Wang L, Zhang CH, Huang H, Li XB, Zhang W, Lu MH, Li MS (2016) Reac Kinet Mech Cat 118:605–619

    CAS  Google Scholar 

  4. 4.

    Karatum O, Deshusses MA (2016) Chem Eng J 294:308–315

    CAS  Google Scholar 

  5. 5.

    Gallegos MV, Peluso MA, Finocchio E, Thomas HJ, Busca G, Sambeth JE (2017) Chem Eng J 313:1099–1111

    CAS  Google Scholar 

  6. 6.

    Shanbhag PV, Guha AK, Sirkar KK (1996) Environ Sci Technol 30:3435–3440

    CAS  Google Scholar 

  7. 7.

    Alvarez-Merino MA, Ribeiro MF, Silva JM, Carrasco-Marín F, Maldonado-Hódar FJ (2004) Environ Sci Technol 38:4664–4670

    CAS  PubMed  Google Scholar 

  8. 8.

    Guisnet M, Dégé P, Magnoux P (1999) Appl Catal B 20:1–13

    CAS  Google Scholar 

  9. 9.

    Kamal MS, Razzak SA, Hossain MM (2016) Atmos Environ 140:117–134

    CAS  Google Scholar 

  10. 10.

    Shi Z, Yang P, Tao F, Zhou R (2016) Chem Eng J 295:99–108

    CAS  Google Scholar 

  11. 11.

    He F, Luo JQ, Liu ST (2016) Chem Eng J 294:362–370

    CAS  Google Scholar 

  12. 12.

    Li WB, Wang JX, Gong H (2009) Catal Today 148:81–87

    CAS  Google Scholar 

  13. 13.

    Liu Y, Dai H, Deng J, Zhang L, Guo G (2013) Inorg Chem 52:8665–8676

    CAS  PubMed  Google Scholar 

  14. 14.

    Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Environ Sci Technol 46:4034–4041

    CAS  PubMed  Google Scholar 

  15. 15.

    Bai B, Li J, Hao J (2015) Appl Catal B 164:241–250

    CAS  Google Scholar 

  16. 16.

    Chen J, Chen X, Xu W, Xu Z, Chen J, Jia H, Chen J (2017) Chem Eng J 330:281–293

    CAS  Google Scholar 

  17. 17.

    Chen J, Chen X, Xu W, Xu Z, Chen J, Jia H, Chen J (2018) Appl Catal B-Environ 224:825–835

    CAS  Google Scholar 

  18. 18.

    Aguilera DA, Perez A, Molina R, Moreno S (2011) Appl Catal B 104:144–150

    CAS  Google Scholar 

  19. 19.

    Li JW, Zhao P, Liu ST (2014) Appl Catal A 482:363–369

    CAS  Google Scholar 

  20. 20.

    Weng XL, Sun PF, Long Y, Meng QJ, Wu ZB (2017) Environ Sci Technol 51:8057–8066

    CAS  PubMed  Google Scholar 

  21. 21.

    Cheng Z, Li JR, Yang P, Zuo SF (2018) Chin J Catal 39:849–856

    CAS  Google Scholar 

  22. 22.

    Zimowska M, Michalik-Zym A, Janik R, Machej T, Gurgul J, Socha RP, Podobiński J, Serwicka EM (2007) Catal Today 119:321–326

    CAS  Google Scholar 

  23. 23.

    Krishnamoorthy S, Rivas JA, Amiridis MD (2000) J Catal 193:264–272

    CAS  Google Scholar 

  24. 24.

    Das R, Pachfule P, Banerjee R, Poddar P (2012) Nanoscale 4:591–599

    CAS  PubMed  Google Scholar 

  25. 25.

    Zhao SN, Song XZ, Song SY, Zhang HJ (2017) Coord Chem Rev 337:80–96

    CAS  Google Scholar 

  26. 26.

    Zhang X, Hou F, Li H, Yang Y, Wang Y, Liu N, Yang Y (2018) Microporous Mesoporous Mater 259:211–219

    CAS  Google Scholar 

  27. 27.

    Cui L, Zhao D, Yang Y, Wang Y, Zhang X (2017) J Solid State Chem 247:168–172

    CAS  Google Scholar 

  28. 28.

    Yang Y, Dong H, Wang Y, Wang Y, Liu N, Wang D, Zhang X (2017) Inorg Chem Commun 86:74–77

    CAS  Google Scholar 

  29. 29.

    Reinsch H, Stock N (2013) CrystEngComm 15:544–550

    CAS  Google Scholar 

  30. 30.

    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Phys Rep 409:47–99

    Google Scholar 

  31. 31.

    Maiti S, Pramanik A, Mahanty S (2016) CrystEngComm 18:450–461

    CAS  Google Scholar 

  32. 32.

    Barakat T, Rooke JC, Tidahy HL, Hosseini M, Cousin R, Lamonier JF, Giraudon JM, Weireld GD, Su BL, Siffert S (2011) Chemsuschem 4:1420–1430

    CAS  PubMed  Google Scholar 

  33. 33.

    Luo M, Cheng Y, Peng X, Pan W (2019) Chem Eng J 369:758–765

    CAS  Google Scholar 

  34. 34.

    Hu WK, He F, Chen X, Liu ST (2018) J Nanoparticle Res 21:6

    Google Scholar 

  35. 35.

    Gopi T, Swetha G, Shekar S, Ramakrishna C, Saini B, Krishna R, Rao P (2017) Catal Commun 92:51–55

    CAS  Google Scholar 

  36. 36.

    He F, Jiao YM, Wu LY, Chen X, Liu ST (2019) Catal Sci Technol 9:6114–6123

    CAS  Google Scholar 

  37. 37.

    Njagi EC, Chen CH, Genuino H, Galindo H, Huang H, Suib SL (2010) Appl Catal B 99:103–110

    CAS  Google Scholar 

  38. 38.

    Pei Z, Wang CN, He F, Liu ST (2014) RSC Adv 4:45665–45672

    Google Scholar 

  39. 39.

    Luo JQ, He F, Liu ST (2017) J Porous Mat 24:821–828

    CAS  Google Scholar 

  40. 40.

    Si W, Wang Y, Zhao S, Hu F, Li J (2016) Environ Sci Technol 50:4572–4578

    CAS  PubMed  Google Scholar 

  41. 41.

    Bai B, Qiao Q, Arandiyan H, Li J, Hao J (2016) Environ Sci Technol 50:2635–2640

    CAS  PubMed  Google Scholar 

  42. 42.

    Shi C, Wang Y, Zhu A, Chen B, Au C (2012) Catal Commun 28:18–22

    CAS  Google Scholar 

  43. 43.

    Huang H, Leung DYC (2011) ACS Catal 1:348–354

    CAS  Google Scholar 

  44. 44.

    Trawczyński J, Bielak B, Miśta W (2005) Appl Catal B 55:277–285

    Google Scholar 

  45. 45.

    Sun M, Yu L, Ye F, Diao G, Yu Q, Hao Z, Zheng Y, Yuan L (2013) Chem Eng J 220:320–327

    CAS  Google Scholar 

  46. 46.

    Jiao YM, Chen X, He F, Liu ST (2019) Chem Eng J 372:107–117

    CAS  Google Scholar 

  47. 47.

    Lamonier JF, Nguyen TB, Franco M, Siffert S, Cousin R, Li Y, Yang XY, Su BL, Giraudon JM (2011) Catal Today 164:566–570

    CAS  Google Scholar 

  48. 48.

    Gannoun C, Turki A, Kochkar H, Delaigle R, Eloy P, Ghorbel A, Gaigneaux EM (2014) Appl Catal B 147:58–64

    CAS  Google Scholar 

  49. 49.

    Wu M, Wang X, Dai Q, Gu Y, Li D (2010) Catal Today 158:336–342

    CAS  Google Scholar 

  50. 50.

    Chen X, Chen X, Cai S, Chen J, Xu W, Jia H, Chen J (2018) Chem Eng J 334:768–779

    CAS  Google Scholar 

  51. 51.

    van den Brink RW, Louw R, Mulder P (1998) Appl Catal B 16:219–226

    Google Scholar 

  52. 52.

    Sun P, Wang W, Weng X, Dai X, Wu Z (2018) Environ Sci Technol 52:6438–6447

    CAS  PubMed  Google Scholar 

Download references


We gratefully acknowledge the funding support of the National Natural Science Foundation of China (No. 21603168) and Scientific Research Foundation of Wuhan Institute of Technology (K201515).

Author information



Corresponding author

Correspondence to Fei He.

Ethics declarations

Conflict of interest

The authors declare no conficts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2200 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., He, F. & Liu, S. CuO/MnOx composites obtained from Mn-MIL-100 precursors as efficient catalysts for the catalytic combustion of chlorobenzene. Reac Kinet Mech Cat (2020).

Download citation


  • CuO
  • MnOx
  • Mn-MIL-100
  • Catalytic combustion
  • Chlorobenzene