Co3O4-g-C3N4 composites with enhanced peroxidase-like activities for the degradation of environmental rhodamine B

Abstract

Co3O4-g-C3N4 hybrid catalysts with different levels of cobalt doping were successfully synthesized via a facile one-pot thermal condensation method. The composition and morphology of the as-prepared Co3O4-g-C3N4 were characterized by XRD, FT-IR and SEM techniques, and evaluated for the catalytic oxidation of 3′,3′,5′,5′-tetramethylbenzidinein (TMB) in the presence of hydrogen peroxide, focusing on the nature of peroxidase-like activity. Catalytic kinetic analysis reveals that the optimized 2.0wt%Co3O4-g-C3N4 shows affinity toward TMB higher than g-C3N4, having activity comparable to that of horseradish peroxidase. This is plausibly due to the synergistic effect of Co3O4 and g-C3N4 as well as the structure of Co3O4-g-C3N4. In rhodamine B degradation, 2.0wt%Co3O4-g-C3N4 displays a reaction rate four times that of g-C3N4. The results reveal that Co3O4-g-C3N4 is a promising artificial peroxidase mimic efficient for degrading water contaminants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Yang W, Hao J, Zhang Z, Zhang B (2015) PB@Co3O4 nanoparticles as both oxidase and peroxidase mimics and their application for colorimetric detection of glutathione. New J Chem 39:8802–8806

    CAS  Article  Google Scholar 

  2. 2.

    Chen PW, Li K, Yu YX, Zhan WD (2017) Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Appl Surf Sci 392:608–615

    CAS  Article  Google Scholar 

  3. 3.

    Biparva P, Abedirad SM, Kazemi SY (2014) ZnO nanoparticles as an oxidase mimic-mediated flow-injection chemiluminescence system for sensitive determination of carvedilol. Talanta 130:116–121

    CAS  Article  PubMed Central  Google Scholar 

  4. 4.

    Wang Q, Chen J, Zhang H, Wu W (2018) Porous Co3O4 nanoplates with pH-switchable peroxidase- and catalase-like activity. Nanoscale 10(40):19140–19146

    CAS  Article  PubMed Central  Google Scholar 

  5. 5.

    Han L, Li C, Zhang T, Lang Q, Liu A (2015) Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl Mater Interfaces 7:14463–14470

    CAS  Article  PubMed Central  Google Scholar 

  6. 6.

    He W, Han X, Jia H, Cai J, Zhou Y, Zheng Z (2017) AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci Rep 7:40103–40112

    CAS  Article  PubMed Central  Google Scholar 

  7. 7.

    Wang Y, Liu RL, Chen GN, Wang L, Yu P, Shu H, Bashir K, Fu Q (2019) Hemin-porous g-C3N4 hybrid nanosheets as an efficient peroxidase mimic for colorimetric and visual determination of glucose. Microchim Acta 186:446–455

    Article  Google Scholar 

  8. 8.

    Huang Y, Zhang L, Ma L, Li Y, Zhong C (2019) Fe3O4@Cu/C and Fe3O4@CuO composites derived from magnetic metal-organic frameworks Fe3O4@HKUST-1 with improved peroxidase-like catalytic activity. Catal Lett. https://doi.org/10.1007/s10562-019-02964-8

    Article  Google Scholar 

  9. 9.

    Guo X, Wang Y, Wu F, Ni Y, Kokot S (2015) A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 140:1119–1140

    CAS  Article  PubMed Central  Google Scholar 

  10. 10.

    Dai Z, Liu S, Bao J, Jui H (2009) Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem Eur J 15:4321–4326

    CAS  Article  PubMed Central  Google Scholar 

  11. 11.

    Zhang X, Zheng C, Guo S, Li J, Yang H, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434

    CAS  Article  Google Scholar 

  12. 12.

    Dong X, Cheng F (2015) Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A 3:23642–23652

    CAS  Article  Google Scholar 

  13. 13.

    Kroke E, Schwarz M (2004) Novel group 14 nitrides. Coordin Chem Rev 248:493–532

    CAS  Article  Google Scholar 

  14. 14.

    Zhang Y, Mori T, Niu L, Ye J (2011) Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy Environ Sci 4:4517–4521

    CAS  Article  Google Scholar 

  15. 15.

    Zeng Z, Yu H, Quan X, Shuo C, Zhang S (2018) Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Appl Catal B 227:153–160

    CAS  Article  Google Scholar 

  16. 16.

    Tang H, Chang S, Tang G, Liang W (2017) AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 391:440–448

    CAS  Article  Google Scholar 

  17. 17.

    Wu JQ, Hua WM, Yue YH, Gao Z (2019) g-C3N4 modified Co3O4 as efficient catalysts for aerobic oxidation of benzyl alcohol. Reac Kinet Mech Cat 128:109–120

    CAS  Article  Google Scholar 

  18. 18.

    Wang Y, Huang J, Cao JL, Li GJ, Zhang ZY (2017) Cobalt oxide decorated flower-like g-C3N4 hybrid nanomaterials for carbon monoxide oxidation. Surf Rev Lett. https://doi.org/10.1142/S0218625X17500585

    Article  Google Scholar 

  19. 19.

    Zhu J, Nie W, Wang Q, Li J, Wang S (2018) In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon 129:29–37

    CAS  Article  Google Scholar 

  20. 20.

    Sun Y, Jiang J, Liu L, Wu S, Zou J (2018) A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones. Appl Surf Sci 130:362–370

    Article  Google Scholar 

  21. 21.

    Ouyang H, Tu X, Fu Z, Wang W, Fu S, Zhu C, Du D, Lin Y (2018) Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens Bioelectron 106:43–49

    CAS  Article  PubMed Central  Google Scholar 

  22. 22.

    Qiao F, Qi Q, Wang Z, Xu K, Ai S (2016) MnSe-loaded g-C3N4 nanocomposite with synergistic peroxidase-like catalysis: synthesis and application toward colorimetric biosensing of H2O2 and glucose. Sens Actuators B 229:379–386

    CAS  Article  Google Scholar 

  23. 23.

    Bi S, Zhao T, Jia XQ, He P (2014) Magnetic graphene oxide-supported hemin peroxidase probe sensitive detection cancer cells. Biosens Bioelectron 57:110–116

    CAS  Article  PubMed Central  Google Scholar 

  24. 24.

    Li XH, Zhang ZJ, Li YB (2014) Artificial enzyme mimics for catalysis and double natural enzyme Co-immobilization. Appl Biochem Biotechnol 172:1859–1865

    CAS  Article  PubMed Central  Google Scholar 

  25. 25.

    Song CO, Lee JW, Choi HS, Kang JK (2013) Two-step synthesis of agglomeration-free peroxidase-like Co3O4 nanoparticles–carbon nitride nanotube hybrids enabling a high redox activity. RSC Adv 3:20179–20185

    CAS  Article  Google Scholar 

  26. 26.

    Mu J, Li J, Zhao X, Yang EC, Zhao XJ (2016) Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment. RSC Adv 6:35568–35576

    CAS  Article  Google Scholar 

  27. 27.

    Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, Berlin

    Google Scholar 

  28. 28.

    Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901

    CAS  Article  PubMed Central  Google Scholar 

  29. 29.

    Zhang Z, Hao J, Yang W, Lu B, Ke X, Zhang B, Tang J (2013) Porous Co3O4 nanorods-reduced graphene oxide with intrinsic peroxidase-like activity and catalysis in the degradation of methylene blue. ACS Appl Mater Interfaces 5:3809–3815

    CAS  Article  PubMed Central  Google Scholar 

  30. 30.

    Shinde SS, Sami A, Lee J (2016) Sulfur mediated graphitic carbon nitride/S-Se-graphene as a metal-free hybrid photocatalyst for pollutant degradation and water splitting. Carbon 96:929–936

    CAS  Article  Google Scholar 

  31. 31.

    Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48:2540–2542

    CAS  Article  Google Scholar 

  32. 32.

    Mu J, Li J, Zhao X, Yang E, Zhao X (2018) Novel urchin-like Co9S8 nanomaterials with efficient intrinsic peroxidase-like activity for colorimetric sensing of copper (II) ion. Sens Actuators B 258:32–41

    CAS  Article  Google Scholar 

  33. 33.

    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    CAS  Article  Google Scholar 

  34. 34.

    Mu J, Zhang L, Zhao G, Wang Y (2014) The crystal plane effect on the peroxidase-like catalytic properties of Co3O4 nanomaterials. Phys Chem Chem Phys 16:15709–15716

    CAS  Article  PubMed Central  Google Scholar 

  35. 35.

    Shi Y, Hu X, Zhao J, Zhou X, Zhu B, Zhang S, Huang W (2015) CO oxidation over Cu2O deposited on 2D continuous lamellar g-C3N4. New J Chem 39:6642–6648

    CAS  Article  Google Scholar 

  36. 36.

    Guo C, Ge M, Liu L, Gao G, Feng Y, Wang YQ (2010) Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation. Environ Sci Technol 44:419–425

    CAS  Article  PubMed Central  Google Scholar 

  37. 37.

    Zhao H, Zhang D, Du P, Li H, Liu C, Li Y, Cao H, Crittenden JC, Huang Q (2015) A combination of electro-enzymatic catalysis and electrocoagulation for the removal of endocrine disrupting chemicals from water. J Hazard Mater 297:269–277

    CAS  Article  PubMed Central  Google Scholar 

  38. 38.

    Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

Download references

Funding

This funding was supported by Natural Science Foundation of Hunan Province [Grant Nos. 2020JJ4243, 2018JJ4046] and The Scientific Research Fund of Hunan Provincial Education Department [Grant No. 16C0392].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1013 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wu, F., Au, C. et al. Co3O4-g-C3N4 composites with enhanced peroxidase-like activities for the degradation of environmental rhodamine B. Reac Kinet Mech Cat (2020). https://doi.org/10.1007/s11144-020-01815-7

Download citation

Keywords

  • Co3O4-g-C3N4
  • Hybrid catalyst
  • Peroxidase-like activity
  • Environmental rhodamine B