Kinetic modeling of the multistep hydrolysis-dehydration of cellulose to platform molecules over a solid carbon acid catalyst in pure water


The present study is devoted to kinetic modeling of cellulose hydrolysis-dehydration into platform molecules (glucose and 5-hydroxymethylfurfural) over a carbon solid acid catalyst. Cellulose depolymerization and transformations of the main process intermediates were experimentally studied under hydrothermal conditions in pure water over a catalyst based on sulfonated Sibunit material at 180 °C in a batch reactor. Based on the data obtained, the 18-step kinetic scheme of the process which included the main reaction pathways was proposed as well as the reaction constants were determined. Kinetic parameters showed that solid acid carbon catalysts seems to be more suitable than soluble ones for the production of 5-HMF from sugars. The proposed software modeling of cellulose hydrolysis-dehydration described the experimental results obtained with a sufficient accuracy.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Scheme 1


  1. 1.

    Negahdar L, Delidovich I, Palkovits R (2016) Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: insights into the kinetics and reaction mechanism. Appl Catal B 184:285–298.

    CAS  Article  Google Scholar 

  2. 2.

    van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Yang P, Kobatashi N, Fukuoka A (2011) Recent developments in the catalytic conversion of cellulose into valuable chemicals. Chin J Catal 32(5):716–722.

    CAS  Article  Google Scholar 

  5. 5.

    Bhaumik P, Dhepe PL (2016) Solid acid catalyzed synthesis of furans from carbohydrates. Catal Rev 58(1):36–112.

    CAS  Article  Google Scholar 

  6. 6.

    Gromov NV, Taran OP, Delidovich IV, Pestunov AV, Rodikova YA, Yatsenko DA, Zhizhina EG, Parmon VN (2016) Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-V-P heteropoly acid catalysts. Catal Today 278:74–81.

    CAS  Article  Google Scholar 

  7. 7.

    Wolfel R, Taccardi N, Bosmann A, Wasserscheid P (2011) Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem 13(10):2759–2763.

    Article  Google Scholar 

  8. 8.

    Maki-Arvela P, Holmbom B, Salmi T, Murzin DY (2007) Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes. Catal Rev 49(3):197–340.

    CAS  Article  Google Scholar 

  9. 9.

    Liu M, Deng W, Zhang Q, Wang Y, Wang Y (2011) Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions. Chem Commun 47(34):9717–9719.

    CAS  Article  Google Scholar 

  10. 10.

    Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed 45(31):5161–5163.

    CAS  Article  Google Scholar 

  11. 11.

    Gromov NV, Medvedeva TB, Taran OP, Timofeeva MN, Said-Aizpuru O, Panchenko VN, Gerasimov EY, Kozhevnikov IV, Parmon VN (2020) The main factors affecting the catalytic properties of Ru/Cs-HPA systems in one-pot hydrolysis-hydrogenation of cellulose to sorbitol. Appl Catal A 595:117489.

    CAS  Article  Google Scholar 

  12. 12.

    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Serrano-Ruiz JC, Braden DJ, West RM, Dumesic JA (2010) Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Appl Catal B 100(1):184–189.

    CAS  Article  Google Scholar 

  14. 14.

    Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin 5(2):198–214.

    CAS  Article  Google Scholar 

  15. 15.

    Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037.

    CAS  Article  Google Scholar 

  16. 16.

    Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. Chemsuschem 3(4):440–443.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937.

    CAS  Article  Google Scholar 

  18. 18.

    Gromov NV, Medvedeva TB, Taran OP, Bukhtiyarov AV, Aymonier C, Prosvirin IP, Parmon VN (2018) Hydrothermal solubilization–hydrolysis–dehydration of cellulose to glucose and 5-hydroxymethylfurfural over solid acid carbon catalysts. Top Catal 61(18):1912–1927.

    CAS  Article  Google Scholar 

  19. 19.

    Gromov NV, Taran OP, Parmon VN (2018) CHAPTER 3 catalysts for depolymerization of biomass. In: Sousa-Aguiar EF, Taran O, Parmon V (eds) Sustainable catalysis for biorefineries. The Royal Society of Chemistry, London, pp 65–97

    Google Scholar 

  20. 20.

    Saeman JF (1945) Kinetics of wood saccharification - hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–52.

    CAS  Article  Google Scholar 

  21. 21.

    Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84(1):81–96.

    Article  PubMed  Google Scholar 

  22. 22.

    Abasaeed AE, Lee YY, Watson JR (1991) Effect of transient heat transfer and particle size on acid hydrolysis of hardwood cellulose. Bioresour Technol 35(1):15–21.

    CAS  Article  Google Scholar 

  23. 23.

    Orozco A, Ahmad M, Rooney D, Walker G (2007) Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Saf Environ Prot 85(5):446–449.

    CAS  Article  Google Scholar 

  24. 24.

    Mok WS, Antal MJ, Varhegyi G (1992) Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose. Ind Eng Chem Res 31(1):94–100.

    CAS  Article  Google Scholar 

  25. 25.

    Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47(1):54–63.

    CAS  Article  Google Scholar 

  26. 26.

    Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng 79(6):610–618.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Camacho F, González-Tello P, Jurado E, Robles A (1996) Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. J Chem Technol Biotechnol 67(4):350–356.<350:AID-JCTB564>3.0.CO;2-9

    CAS  Article  Google Scholar 

  28. 28.

    Malester IA, Green M, Shelef G (1992) Kinetics of dilute acid hydrolysis of cellulose originating from municipal solid wastes. Ind Eng Chem Res 31(8):1998–2003.

    CAS  Article  Google Scholar 

  29. 29.

    Franzidis J-P, Porteous A, Anderson J (1982) The acid hydrolysis of cellulose in refuse in a continuous reactor. Conserv Recycl 5(4):215–225.

    CAS  Article  Google Scholar 

  30. 30.

    Abatzoglou N, Bouchard J, Chornet E, Overend RP (1986) Dilute acid depolymerization of cellulose in aqueous phase: experimental evidence of the significant presence of soluble oligomeric intermediates. Can J Chem Eng 64(5):781–786.

    CAS  Article  Google Scholar 

  31. 31.

    SriBala G, Vinu R (2014) Unified kinetic model for cellulose deconstruction via acid hydrolysis. Ind Eng Chem Res 53(21):8714–8725.

    CAS  Article  Google Scholar 

  32. 32.

    Bouchard J, Garnier G, Vidal P, Chornet E, Overend RP (1990) Characterization of depolymerized cellulosic residues. Wood Sci Technol 24(2):159–169.

    CAS  Article  Google Scholar 

  33. 33.

    Xiang Q, Kim JS, Lee YY (2003) A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 106(1):337–352.

    Article  Google Scholar 

  34. 34.

    Fagan RD, Grethlein HE, Converse AO, Porteous A (1971) Kinetics of the acid hydrolysis of cellulose found in paper refuse. Environ Sci Technol 5(6):545–547.

    CAS  Article  Google Scholar 

  35. 35.

    Xiang Q, Lee YY, Pettersson PO, Torget RW (2003) Heterogeneous aspects of acid hydrolysis of α-cellulose. Appl Biochem Biotechnol 107(1):505–514.

    Article  Google Scholar 

  36. 36.

    Conner AH, Wood BF, Hill CG, Harris JF (1986) In: Young RA, Rowell RM (eds) Cellulose: structure, modification and hydrolysis. Wiley, New York, pp 281–296

    Google Scholar 

  37. 37.

    Bahari A, Baig MN, Leeke GA, Bowra S, Santos RCD (2014) Subcritical water mediated hydrolysis of cider spent yeast: kinetics of HMF synthesis from a waste microbial biomass. Ind Crops Prod 61:137–144.

    CAS  Article  Google Scholar 

  38. 38.

    Cantero DA, Bermejo MD, Cocero MJ (2015) Governing chemistry of cellulose hydrolysis in supercritical water. Chemsuschem 8(6):1026–1033.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Gurgel LVA, Marabezi K, Zanbom MD, Curvelo AADS (2012) Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Ind Eng Chem Res 51(3):1173–1185.

    CAS  Article  Google Scholar 

  40. 40.

    Gromov NV, Taran OP, Semeykina VS, Danilova IG, Pestunov AV, Parkhomchuk EV, Parmon VN (2017) Solid acidic NbOx/ZrO2 catalysts for transformation of cellulose to glucose and 5-hydroxymethylfurfural in pure hot water. Catal Lett 147(6):1485–1495.

    CAS  Article  Google Scholar 

  41. 41.

    Feather MS, Harris JF (1973) Dehydration reactions of carbohydrates. In: Tipson RS, Derek H (eds) Advances in carbohydrate chemistry and biochemistry. Academic Press, Cambridge, pp 161–224

    Google Scholar 

  42. 42.

    Bobleter O, Bonn G (1983) The hydrothermolysis of cellobiose and its reaction-product d-glucose. Carbohydr Res 124(2):185–193.

    CAS  Article  Google Scholar 

  43. 43.

    Ponder GR, Richards GN (1993) Pyrolysis of inulin, glucose and fructose. Carbohydr Res 244(2):341–359.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    De Wit G, Kieboom APG, van Bekkum H (1979) Enolisation and isomerisation of monosaccharides in aqueous, alkaline solution. Carbohydr Res 74(1):157–175.

    Article  Google Scholar 

  45. 45.

    Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38(8):2888–2895.

    CAS  Article  Google Scholar 

  46. 46.

    Baugh KD, McCarty PL (1988) Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates. Biotechnol Bioeng 31(1):50–61.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Bonn G, Bobleter O (1983) Determination of the hydrothermal degradation products of D-(U-14C) glucose and D-(U-14C) fructose by TLC. J Radioanal Chem 79(2):171–177.

    CAS  Article  Google Scholar 

  48. 48.

    Klinger D, Vogel H (2010) Influence of process parameters on the hydrothermal decomposition and oxidation of glucose in sub- and supercritical water. J Supercrit Fluids 55(1):259–270.

    CAS  Article  Google Scholar 

  49. 49.

    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13(1–3):261–268.

    CAS  Article  Google Scholar 

  50. 50.

    Jiang C-W, Zhong X, Luo Z-H (2014) An improved kinetic model for cellulose hydrolysis to 5-hydroxymethylfurfural using the solid SO42-/Ti-MCM-41 catalyst. RSC Adv 4(29):15216–15224.

    CAS  Article  Google Scholar 

  51. 51.

    Tewari YB, Goldberg RN (1984) Thermodynamics of the conversion of aqueous glucose to fructose. J Solut Chem 13(8):523–547.

    CAS  Article  Google Scholar 

  52. 52.

    Delidovich I, Gyngazova MS, Sánchez-Bastardo N, Wohland JP, Hoppe C, Drabo P (2018) Production of keto-pentoses via isomerization of aldo-pentoses catalyzed by phosphates and recovery of products by anionic extraction. Green Chem 20(3):724–734.

    CAS  Article  Google Scholar 

  53. 53.

    Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T, Hattori H, Smith RL Jr, Arai K (2007) Reactions of d-fructose in water at temperatures up to 400 °C and pressures up to 100 MPa. J Supercrit Fluids 42(1):110–119.

    CAS  Article  Google Scholar 

  54. 54.

    Antal MJ Jr, Mok WSL, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr Res 199(1):91–109.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Bobleter O, Schwald W, Concin R, Binder H (1986) Hydrolysis of cellobiose in dilute sulpuric acid and under hydrothermal conditions. J Carbohydr Chem 5(3):387–399.

    CAS  Article  Google Scholar 

  56. 56.

    Mukherjee A, Dumont M-J, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183.

    CAS  Article  Google Scholar 

  57. 57.

    Horvat J, Klaić B, Metelko B, Šunjić V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114.

    CAS  Article  Google Scholar 

  58. 58.

    van Dam HE, Kieboom APG, van Bekkum H (1986) The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural. Starch - Stärke 38(3):95–101.

    Article  Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research (Project 17-53-16027) and Russian–French GDRI “Biomass”.

Author information



Corresponding author

Correspondence to Nikolay V. Gromov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 143 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

V. Gromov, N., P. Taran, O., Aymonier, C. et al. Kinetic modeling of the multistep hydrolysis-dehydration of cellulose to platform molecules over a solid carbon acid catalyst in pure water. Reac Kinet Mech Cat (2020).

Download citation


  • Cellulose
  • Hydrolysis-dehydration
  • Kinetics
  • Modeling
  • Sibunit
  • Carbon catalyst