Mathematical modeling of enzymatic syntheses of biosurfactants catalyzed by immobilized lipases

Abstract

This work aimed at the kinetic modeling of enzymatic reactions for the production of sugar fatty esters type biosurfactants. The production of biosurfactants by esterification (72 h, 250 rpm stirring and 1.5 g of molecular sieve) of oleic and lauric acids with fructose and lactose, in the presence of tert-butanol and 2-methyl-2-butanol, has already been evaluated experimentally using Candida antarctica lipase B immobilized (CALB-IM-T2-350) and Pseudomonas fluorescens lipase (PFL) immobilized on octyl-silica. Acid conversion against time assays were carried out changing the following parameters: acid:sugar molar ratio (1:1 and 1:2), sugar concentration (25 and 50 mM), temperature (45 and 55 °C) and mass of biocatalyst (0.25 and 0.5 g). The Ping Pong Bi Bi kinetic model was fitted to data selected from the above-cited assays, assuming the production of only monoesters (relating the consumption of sugar and acid by an equimolar relation). The values for Vmax, Ksugar and Kacid were estimated. When CALB-IM-T2-350 was used, at 55 °C, Vmax = 1133 ± 221 mmol/Lh, Ksugar = 1378 ± 1696 mmol/L and Kacid = 3298 ± 1015 mmol/L. In the syntheses with PFL-octyl-silica, the results indicated lower conversions, with Vmax varying between 124 ± 13 and 221 ± 34 mmol/Lh (depending on reaction conditions) and K = 10,241 ± 1526 mmol/L (in average). A very good fit of the proposed model to the experimental data was obtained. For validation purpose, a different set of experimental data was used. The validation concentration profile showed an excellent prediction capability of the model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Lima LN, Mendes AA, Fernandez-Lafuente R, Tardioli PW, de Camargo Giordano RL (2018) Performance of different immobilized lipases in the syntheses of short- and long-chain carboxylic acid esters by esterification reactions in organic media. Molecules 23(4):766

    Article  Google Scholar 

  2. 2.

    Vescovi V, Santos JBC, Tardioli PW (2017) Porcine pancreatic lipase hydrophobically adsorbed on octyl-silica: a robust biocatalyst for syntheses of xylose fatty acid esters. Biocatal Biotransform 35(4):298–305

    CAS  Article  Google Scholar 

  3. 3.

    Colla LM, Rizzardi J, Pinto MH, Reinehr CO, Bertolin TE, Costa JAV (2010) Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.05.086

    Article  PubMed  Google Scholar 

  4. 4.

    Khan NR, Rathod VK (2015) Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochem. https://doi.org/10.1016/j.procbio.2015.07.014

    Article  Google Scholar 

  5. 5.

    Nitschke M, Pastore GM (2002) Biossurfactantes: propriedades e aplicações. Quim Nova 25(5):772–776

    CAS  Article  Google Scholar 

  6. 6.

    Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

    Article  Google Scholar 

  7. 7.

    Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016

    CAS  Article  Google Scholar 

  8. 8.

    Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation, applications, current. Genet Eng Biotechnol J 29:1–42

    Google Scholar 

  9. 9.

    van den Broek LAM, Boeriu CG (2013) Enzymatic synthesis of oligo- and polysaccharide fatty acid esters. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2012.05.051

    Article  PubMed  Google Scholar 

  10. 10.

    Mustafa A, Karmali A, Abdelmoez W (2016) Optimisation and economic assessment of lipase-catalysed production of monoesters using Rhizomucor miehei lipase in a solvent-free system. J Clean Prod. https://doi.org/10.1016/j.jclepro.2016.07.056

    Article  Google Scholar 

  11. 11.

    Nitschke M, Silva SS (2018) Recent food applications of microbial surfactants. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2016.1208635

    Article  PubMed  Google Scholar 

  12. 12.

    Silva ACB, Rodrigues MS, de Sousa JR, de Resende MM (2019) An experimental and computational study of biosurfactant production from soy molasses. React Kinet Mech Catal. https://doi.org/10.1007/s11144-019-01657-y

    Article  Google Scholar 

  13. 13.

    Costa SGVADO, Nitschke M, Contiero J (2008) Produção de biotensoativos a partir de resíduos de óleos e gorduras. Cienc e Tecnol Aliment 28(1):34–38

    CAS  Article  Google Scholar 

  14. 14.

    Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng 115(4):796–814

    CAS  Article  Google Scholar 

  15. 15.

    Kennedy JF, Kumar H, Panesar PS, Marwaha SS, Goyal R, Parmar A, Kaur S (2006) Enzyme-catalyzed regioselective synthesis of sugar esters and related compounds. J Chem Technol Biotechnol 81(October):866–876

    CAS  Article  Google Scholar 

  16. 16.

    Gumel AM, Annuar MSM, Heidelberg T, Chisti Y (2011) Lipase mediated synthesis of sugar fatty acid esters. Process Biochem 46(11):2079–2090

    CAS  Article  Google Scholar 

  17. 17.

    An D, Zhang X, Liang F, Xian M, Feng D, Ye Z (2019) Synthesis, surface properties of glucosyl esters from renewable materials for use as biosurfactants. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2019.05.079

    Article  Google Scholar 

  18. 18.

    Dang HT, Obiri O, Hayes DG (2005) Feed batch addition of saccharide during saccharide-fatty acid esterification catalyzed by immobilized lipase: time course, water activity, and kinetic model. JAOCS 82(7):487–493

    CAS  Article  Google Scholar 

  19. 19.

    Zaidan UH, Abdul Rahman MB, Othman SS, Basri M, Abdulmalek E, Rahman RNZRA, Salleh AB (2011) Kinetic behaviour of free lipase and mica-based immobilized lipase catalyzing the synthesis of sugar esters. Biosci Biotechnol Biochem. https://doi.org/10.1271/bbb.110117

    Article  PubMed  Google Scholar 

  20. 20.

    Reis P, Miller R, Krägel J, Leser M, Fainerman V, Watzke H, Holmberg K (2008) Lipases at interfaces: unique interfacial properties as globular proteins. Langmuir 24(13):6812–6819

    CAS  Article  Google Scholar 

  21. 21.

    Thangaraj B, Solomon PR (2019) Immobilization of lipases—a review. Part I: enzyme immobilization. ChemBioEng Rev 6(5):157–166

    CAS  Article  Google Scholar 

  22. 22.

    Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16(9):396–403

    CAS  Article  Google Scholar 

  23. 23.

    Paiva AL, Balcao VM, Malcata FXX, Balcão VM, Malcata FXX (2000) Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzym Microb Technol 27(3–5):187–204

    CAS  Article  Google Scholar 

  24. 24.

    Stergiou P-Y, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31:1846–1859

    CAS  Article  Google Scholar 

  25. 25.

    Cajal Y, Svendsen A, De Bolós J, Patkar SA, Alsina MA (2000) Effect of the lipid interface on the catalytic activity and spectroscopic properties of a fungal lipase. Biochimie 82(11):1053–1061

    CAS  Article  Google Scholar 

  26. 26.

    Kazlauskas RJ (1994) Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties. Trends Biotechnol 12(11):464–472

    CAS  Article  Google Scholar 

  27. 27.

    Hernandez K, Garcia-Galan C, Fernandez-Lafuente R (2011) Simple and efficient immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads. Enzym Microb Technol. https://doi.org/10.1016/j.enzmictec.2011.03.002

    Article  Google Scholar 

  28. 28.

    Stauch B, Fisher SJ, Cianci M (2015) Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation. J Lipid Res 56:2348–2358

    CAS  Article  Google Scholar 

  29. 29.

    Dandekar PP, Patravale VB (2009) Enzymatic synthesis of fructose ester from Mango Kernel Fat. Indian J Chem Technol 16(4):317–321

    CAS  Google Scholar 

  30. 30.

    Enayati M, Gong Y, Goddard JM, Abbaspourrad A (2018) Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipases in organic solvents. Food Chem. https://doi.org/10.1016/j.foodchem.2018.06.051

    Article  PubMed  Google Scholar 

  31. 31.

    Li X, Hai YW, Ma D, Chen J, Banwell MG, Lan P (2019) Fatty acid ester surfactants derived from raffinose: synthesis, characterization and structure-property profiles. J Colloid Interface Sci 556:616–627

    CAS  Article  Google Scholar 

  32. 32.

    Marathe SJ, Shah NN, Singhal RS (2020) Enzymatic synthesis of fatty acid esters of trehalose: process optimization, characterization of the esters and evaluation of their bioactivities. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2019.103460

    Article  PubMed  Google Scholar 

  33. 33.

    do Neta NAS, dos Santos JCS, de Sancho SO, Rodrigues S, Gonçalves LRB, Rodrigues LR, Teixeira JA (2012) Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2011.10.009

    Article  Google Scholar 

  34. 34.

    Nguyen PC, Nguyen MTT, Lee CK, Oh IN, Kim JH, Hong ST, Park JT (2019) Enzymatic synthesis and characterization of maltoheptaose-based sugar esters. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.04.079

    Article  PubMed  Google Scholar 

  35. 35.

    Soultani S, Engasser JM, Ghoul M (2001) Effect of acyl donor chain length and sugar/acyl donor molar ratio on enzymatic synthesis of fatty acid fructose esters. J Mol Catal B Enzym 11(4–6):725–731

    CAS  Article  Google Scholar 

  36. 36.

    Li L, Ji F, Wang J, Jiang B, Li Y, Bao Y (2015) Efficient mono-acylation of fructose by lipase-catalyzed esterification in ionic liquid co-solvents. Carbohydr Res 416:51–58

    CAS  Article  Google Scholar 

  37. 37.

    Arcos JA, Hill CG, Otero C (2001) Kinetics of the lipase-catalyzed synthesis of glucose esters in acetone. Biotechnol Bioeng 73(2):104–110

    CAS  Article  Google Scholar 

  38. 38.

    Chávez-Flores L, Beltran H, Arrieta-Baez D, Reyes-Duarte D (2017) Regioselective synthesis of lactulose esters by Candida antarctica and Thermomyces lanuginosus lipases. Catalysts. https://doi.org/10.3390/catal7090263

    Article  Google Scholar 

  39. 39.

    Woudenberg-Van Oosterom M, Van Rantwijk F, Sheldon RA (1996) Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnol Bioeng 49(3):328–333

    CAS  Article  Google Scholar 

  40. 40.

    Nelles O (2001) Nonlinear system identification. Springer, Berlin

    Google Scholar 

  41. 41.

    Voet D, Voet JG (2013) Bioquímica. Artmed, Porto Alegre

    Google Scholar 

  42. 42.

    Russel JB (1994) Química Geral, vol 2. Makron Books, São Paulo

    Google Scholar 

  43. 43.

    Shuler ML, Kargi F (2001) Bioprocess engineering basic concepts. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

São Paulo Research Foundation (FAPESP, Grant #2016/10636–8), Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES – Finance Code 001).

Funding

The researched was supported by São Paulo Research Foundation (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruy de Sousa Júnior.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Lima Torres, A., de Lima, L.N., Tardioli, P.W. et al. Mathematical modeling of enzymatic syntheses of biosurfactants catalyzed by immobilized lipases. Reac Kinet Mech Cat (2020). https://doi.org/10.1007/s11144-020-01812-w

Download citation

Keywords

  • Sugar fatty esters syntheses
  • Enzymatic route
  • Kinetic model
  • Ping Pong Bi Bi mechanism