Skip to main content
Log in

Ni/Al2O3-La2O3 catalysts synthesized by a one-step polymerization method applied to the dry reforming of methane: effect of precursor structures of nickel, perovskite and spinel

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ni catalysts supported on alumina with various lanthanum contents were prepared by the one-step polymerization method to form catalytic precursors that allow better dispersion of the active nickel metal and improve the Ni-La interaction in catalysts containing Ni, Al and La. The characterization of the materials was performed by XRD analysis, N2 adsorption–desorption, H2-temperature programmed reduction, CO2 and H2-temperature programmed desorption and scanning electron microscopy. The catalytic tests were conducted over a period of 6 h and with a stoichiometric ratio of CH4:CO2 equal to 1. The addition of lanthanum in the catalysts led to the formation of LaNiO3 and LaAlO3 perovskites, with a significant reduction of the specific surface area. The catalysis without the presence of lanthanum (NiAl) presented higher methane conversion during the catalytic test but the NiAlLa0.5 catalyst showed highest catalytic activity when considered the number of active sites exposed for reaction. In addition, it was observed that the formation of LaNiO3 perovskite reduces the sintering of the active phase, increasing the degree of dispersion of the catalysis and provides better Ni-La interaction in dry reforming of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li X, Ke J, Wang J, Liang C, Kang M, Zhao Y, Li Q (2018) A new amino-alcohol originated from carbon dioxide and its application as chain extender in the preparation of polyurethane. J CO2 Util 26:52–59

    Article  CAS  Google Scholar 

  2. Dixit RJ, Majumder CB (2018) CO2 capture and electro-conversion into valuable organic products: a batch and continuous study. J CO2 Util 26:80–92

    Article  CAS  Google Scholar 

  3. Barbarossa V, Vanga G, Viscardi R, Gattia DM (2014) CO2 as carbon source for fuel synthesis. Enrgy Procedia 45:1325–1329

    Article  CAS  Google Scholar 

  4. Bellido JDA, Souza JE, M’Peko JC, Assaf EM (2009) Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Appl Catal A 358:215–223

    Article  CAS  Google Scholar 

  5. Li D, Xu S, Song K, Chen C, Jiang L (2018) Hydrotalcite-derived Co/Mg(Al)O as a stable and coke-resistant catalyst for low-temperature carbon dioxide reforming of methane. Appl Catal A 552:21–29

    Article  CAS  Google Scholar 

  6. Li D, Nakagawa Y, Tomishige K (2011) Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl Catal A 408:1–24

    Article  CAS  Google Scholar 

  7. Romero A, Jobbágy M, Laborde M, Baronetti G, Amadeo N (2014) Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: influence of the Mg content. Appl Catal A 470:398–404

    Article  CAS  Google Scholar 

  8. Mazumder J, De Lasa H (2014) Fluidizable Ni/La2O3-Al2O3 catalyst for steam gasification of a cellulosic biomass surrogate. Appl Catal B 160–161:67–79

    Article  CAS  Google Scholar 

  9. Hossain MM, Lopez D, Herrera J, De Lasa HI (2009) Nickel on lanthanum-modified γ-Al2O3 oxygen carrier for CLC: reactivity and stability. Catal Today 143:179–186

    Article  CAS  Google Scholar 

  10. Navarro RM, Alvarez-Galvána MC, Sánchez-Sánchez MC, Rosa F, Fierro JLG (2005) Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Appl Catal B 55:229–241

    Article  CAS  Google Scholar 

  11. Świrk K, Motak M, Grzybek T, Rønning M, Da Costa P (2019) Effect of low loading of yttrium on Ni-based layered double hydroxides in CO2 reforming of CH4. React Kinet Mech Cat 126:611–628

    Article  CAS  Google Scholar 

  12. Ojeda-Niño OH, Gracia F, Daza C (2019) Role of Pr on Ni-Mg-Al mixed oxides synthesized by microwave-assisted self-combustion for dry reforming of methane. Ind Eng Chem Res 58:7909–7921

    Article  CAS  Google Scholar 

  13. Natesakhawat S, Oktar O, Ozkan US (2005) Effect of lanthanide promotion on catalytic performance of sol–gel Ni/Al2O3 catalysts in steam reforming of propane. J Mol Catal A 241:133–146

    Article  CAS  Google Scholar 

  14. Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S, Müller CR (2016) Dry-reforming of methane over bimetallic Ni–M/La2O3 (M = Co, Fe): the effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability. J Catal 343:208–214

    Article  CAS  Google Scholar 

  15. Tsipouriari VA, Verykios XE (1999) Carbon and oxygen reaction pathways of CO2 reforming of methane over Ni/La2O3 and Ni/Al2O3 catalysts studied by isotopic tracing techniques. J Catal 187:85–94

    Article  CAS  Google Scholar 

  16. Xu J, Zhou W, Wang J, Li Z, Ma J (2009) Characterization and analysis of carbon deposited during the dry reforming of methane over Ni/La2O3/Al2O3 catalysts. Chin J Catal 30:1076–1084

    Article  CAS  Google Scholar 

  17. Yang R, Xing C, Lv C, Shi L, Tsubaki N (2010) Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Appl Catal A 385:92–100

    Article  CAS  Google Scholar 

  18. Xu Z, Li Y, Zhang J, Chang L, Zhou R, Duan Z (2001) Ultrafine NiO–La2O3–Al2O3 aerogel: a promising catalyst for CH4/CO2 reforming. Appl Catal A 213:65–71

    Article  CAS  Google Scholar 

  19. Cui Y, Zhang H, Xu H, Li W (2007) The CO2 reforming of CH4 over Ni/La2O3/α-Al2O3 catalysts: the effect of La2O3 contents on the kinetic performance. Appl Catal A 331:60–69

    Article  CAS  Google Scholar 

  20. Gallego GS, Mondragón F, Barrault J, Tatiboue JM, Batiot-Dupeyrat C (2006) CO2 reforming of CH4 over La–Ni based perovskite precursors. Appl Catal A 311:164–171

    Article  CAS  Google Scholar 

  21. Arai H, Machida M (1996) Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion. Appl Catal A 138:161–176

    Article  CAS  Google Scholar 

  22. Su YJ, Kl Pan, Chang MB (2014) Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane. Int J Hydrog Energy 39:4917–4925

    Article  CAS  Google Scholar 

  23. Hernandez D, Velasquez M, Ayrault P, Lopez D, Fernandez JJ, Santamaria A, Batiot-Dupeyrat C (2013) Gas phase glycerol conversion over lanthanum based catalysts: LaNiO3 and La2O3. Appl Catal A 467:315–324

    Article  CAS  Google Scholar 

  24. Da Silva CA, De Miranda PEV (2015) Synthesis of LaAlO3 based materials for potential use as methane-fueled solid oxide fuel cell anodes. Int J Hydrog Energy 40:10002–10015

    Article  CAS  Google Scholar 

  25. Zygmuntowicz J, Wiecinska P, Miazga A, Konopka K (2016) Characterization of composites containing NiAl2O4 spinel phase from Al2O3/NiO and Al2O3/Ni systems. J Therm Anal Calorim 125:1079–1086

    Article  CAS  Google Scholar 

  26. Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S (2013) Inverse NiAl2O4 on LaAlO3–Al2O3: unique catalytic structure for stable CO2 reforming of methane. J Phys Chem C 117:8120–8130

    Article  CAS  Google Scholar 

  27. Meshkani F, Golesorkh SF, Rezaei M, Andache M (2017) Nickel catalyst supported on mesoporous MgAl2O4 nanopowders synthesized via a homogenous precipitation method for dry reforming reaction. Res Chem Intermed 43:545–559

    Article  CAS  Google Scholar 

  28. López-Fonseca R, Jiménez-González C, De Rivas B, Gutiérrez-Ortiz JI (2012) Partial oxidation of methane to syngas on bulk NiAl2O4catalyst. Comparison with alumina supported nickel, platinum and rhodium catalysts. Appl Catal A 437–438:53–62

    Article  CAS  Google Scholar 

  29. Asencios YJO, Elias KFM, Assaf EM (2014) Oxidative-reforming of model biogas over NiO/Al2O3 catalysts: the influence of the variation of support synthesis conditions. Appl Surf Sci 317:350–359

    Article  CAS  Google Scholar 

  30. Jiménez-González C, Boukha Z, De Rivas B, Delgado JJ, Cauqui MA, González-Velasco JR, Gutiérrez-Ortiz JI, López-Fonseca R (2013) Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures. Appl Catal A 466:9–20

    Article  CAS  Google Scholar 

  31. Yang R, Li X, Wu J, Zhang X, Zhang Z, Cheng Y, Guo J (2009) Hydrotreating of crude 2-ethylhexanol over Ni/Al2O3catalysts: surface Ni species-catalytic activity correlation. Appl Catal A 368:105–112

    Article  CAS  Google Scholar 

  32. Yang EH, Kim NY, Noh Y, Lim SS, Jung JS, Lee JS, Hong GH, Moon DJ (2015) Steam CO2 reforming of methane over La1−xCexNiO3perovskite catalysts. Int J Hydrog Energy 40:11831–11839

    Article  CAS  Google Scholar 

  33. Slagtern A, Olsbye U, Blom R, Dahl IM, Fjellvag H (1996) In situ XRD characterization of La-Ni-Al-O model catalysts for CO2 reforming of methane. Appl Catal A 145:375–388

    Article  CAS  Google Scholar 

  34. Batiot-Dupeyrat C, Valderrama G, Meneses A, Martinez F, Barrault J, Tatibouet JM (2003) Pulse study of CO2 reforming of methane over LaNiO3. Appl Catal A 248:143–151

    Article  CAS  Google Scholar 

  35. Bellido JDA, Assaf EM (2009) Effect of the Y2O3-ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane. Appl Catal A 352:179–187

    Article  CAS  Google Scholar 

  36. Zhang L, Lian J, Li L, Peng C, Liu W, Xu X, Fang X, Wang Z, Wang X, Peng H (2018) LaNiO3 nanocube embedded in mesoporous silica for dry reforming of methane with enhanced coking resistance. Microporous Mesoporous Mat 266:189–197

    Article  CAS  Google Scholar 

  37. Mazumder J, De Lasa HI (2014) Ni catalysts for steam gasification of biomass: effect of La2O3 loading. Catal Today 237:100–110

    Article  CAS  Google Scholar 

  38. Coleman LJI, Epling W, Hudgins RR, Croiset E (2009) Ni/Mg–Al mixed oxide catalyst for the steam reforming of ethanol. Appl Catal A 363:52–63

    Article  CAS  Google Scholar 

  39. Morais Batista AH, Ramos FSO, Braga TP, Lima CL, Sousa FF, Barros EBD, Filho JM, Oliveira AS, Sousa JR, Valentini A, Oliveira AC (2010) Mesoporous MAl2O4 (M = Cu, Ni, Fe or Mg) spinels: characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2. Appl Catal A 382:148–157

    Article  CAS  Google Scholar 

  40. Song F, Zhong Q, Yu Y, Shi M, Wu Y, Hu J, Song Y (2017) Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method. Int J Hydrog Energy 42:4174–4183

    Article  CAS  Google Scholar 

  41. Zhang L, Wang X, Chen C, Zou X, Ding W, Lu X (2017) Dry reforming of methane to syngas over lanthanum-modified mesoporous nickel aluminate/γ-alumina nanocomposites by one-pot synthesis. Int J Hydrog Energy 42:11333–11345

    Article  CAS  Google Scholar 

  42. Boukha Z, Fitian L, López-Haro M, Mora M, Ruiz JR, Jiménez-Snachidrián C, Blanco G, Calvino JJ, Cifredo GA, Trasobares S, Bernal S (2010) Influence of the calcination temperature on the nano-structural properties, surface basicity, and catalytic behavior of alumina-supported lanthana samples. J Catal 272:121–130

    Article  CAS  Google Scholar 

  43. Velu S, Gangwal SK (2006) Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption. Solid State Ion 177:803–811

    Article  CAS  Google Scholar 

  44. Mihet M, Lazar MD (2018) Methanation of CO2 on Ni/γ-Al2O3: influence of Pt, Pd or Rh promotion. Catal Today 306:294–299

    Article  CAS  Google Scholar 

  45. Argyle M, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:145–269

    Article  CAS  Google Scholar 

  46. Znak L, Stolecki K, Zielinski J (2005) The effect of cerium, lanthanum and zirconium on nickel/alumina catalysts for the hydrogenation of carbon oxides. Catal Today 101:65–71

    Article  CAS  Google Scholar 

  47. Bligaard T, Bullock RM, Campbell CT, Chen JG, Gates BC, Gorte RJ, Jones CW, Jones WD, Kitchin JR, Scott SL (2016) Toward benchmarking in catalysis science: best practices, challenges, and opportunities. ACS Catal 6:2590–2602

    Article  CAS  Google Scholar 

  48. Kim WY, Jang JS, Ra EC, Kim KY, Kim EH, Lee JS (2019) Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane. Appl Catal A 575:198–203

    Article  CAS  Google Scholar 

  49. Tao Q, Wang Z, Jayasundera B, Guo C, Gan Y, Zhang L, Lu Z, Tan H, Yan C (2018) Enhanced catalytic activity of Ni–Mo2C/La2O3–ZrO2 bifunctional catalyst for dry reforming of methane. J Mater Sci 53:14559–14572

    Article  CAS  Google Scholar 

  50. Råberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Sjåstad Olafsen (2007) A Propane dry reforming to synthesis gas over Ni-based catalysts: influence of support and operating parameters on catalyst activity and stability. J Catal 249:250–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to CNPq (Process No. 485252/2013-9) and FAPEMIG (Process No. APQ-03361-15) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge D. A. Bellido.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.K.S., Baston, E.P., Melgar, L.Z. et al. Ni/Al2O3-La2O3 catalysts synthesized by a one-step polymerization method applied to the dry reforming of methane: effect of precursor structures of nickel, perovskite and spinel. Reac Kinet Mech Cat 128, 251–269 (2019). https://doi.org/10.1007/s11144-019-01644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01644-3

Keywords

Navigation