Skip to main content
Log in

Kinetic evaluation of the hydroformylation of the post-metathesis product 7-tetradecene using a heterobimetallic rhodium-ferrocenyl Schiff base derived precatalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Reaction engineering kinetics for the hydroformylation of the post-metathesis product 7-tetradecene using a heterobimetallic rhodium-ferrocenyl Schiff base derived precatalyst was investigated with variation of reaction temperature (85–105 °C), precatalyst loading (0.25–0.52 mM), carbon monoxide partial pressures (20–40 bar) and hydrogen partial pressures (20–40 bar). The experimental product-time distributions for the parallel hydroformylation and isomerization reaction system are well described by four interdependent pseudo first-order differential mole balance equations. The effects of temperature in the Arrhenius equation, precatalyst concentration, carbon monoxide and hydrogen partial pressures have been incorporated into a phenomenological mechanism-based rate equation. The rate of hydroformylation is first order in alkene, carbon monoxide and hydrogen, with fractional dependence in precatalyst concentration. The activation energy for the hydroformylation reaction was calculated to be 62 kJ mol−1, which is comparable to that determined for the commercialized phosphorus-modified catalyst systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C14:

7-Tetradecene

2HN:

2-Hexylnonanal

ISOALK:

Isoalkenes

ISOALD:

Isoaldehydes

Rh:

Rhodium

SSE:

Sum of square errors

C:

Concentration (mol L−1)

EA :

Activation energy (kJ mol−1)

K:

Observed reaction rate constant (h−1)

k0 :

Pre-exponential factor (Lx mol−x bar2 h−1/Lx mol−x h−1)

K:

Equilibrium constant (bar−1)

P:

Pressure (bar)

R:

Universal gas constant (J mol−1 K−1)

T:

Temperature (°C/K)

References

  1. Cornils B, Hermann W (2002) Applied homogeneous catalysis with organometallic compounds: a comprehensive handbook in three volumes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Van Leeuwen P, Claver C (eds) (2002) Rhodium catalyzed hydroformylation. Springer, New York

    Google Scholar 

  3. Franke R, Selent D, Borner A (2012) Applied hydroformylation. Chem Rev 112:5675–5732

    Article  CAS  PubMed  Google Scholar 

  4. Park J, Hong S (2012) Cooperative bimetallic catalysis in asymmetric transformations. Chem Soc Rev 41:6931–6943

    Article  CAS  PubMed  Google Scholar 

  5. Van der Vlugt J (2012) Cooperative catalysis with first-row late transition metals. Eur J Inorg Chem 3:363–375

    Article  CAS  Google Scholar 

  6. Timerbulatova M, Gatus M, Vuong K, Bhadbhade M, Algarra A, Macgregor S, Messerle B (2013) Bimetallic complexes for enhancing catalyst efficiency: probing the relationship between activity and intermetallic distance. Organometallics 32:5071–5081

    Article  CAS  Google Scholar 

  7. Feringa B, Van den Beuken E (1998) Bimetallic catalysis by late transition metal complexes. Tetrahedron 54:12985–13011

    Article  Google Scholar 

  8. Bratko I, Gómez M (2013) Polymetallic complexes linked to a single-frame ligand: cooperative effects in catalysis. Dalton Trans 42:10664–10681

    Article  CAS  PubMed  Google Scholar 

  9. Lally M, Broussier R, Gautheron B (2000) Ferrocene-based phosphonite–phosphine ligands, Pd and Rh complexes. Tetrahedron Lett 41:1183–1185

    Article  Google Scholar 

  10. Hierso J, Lacassin F, Broussier R, Amardeil R, Meunier P (2004) Synthesis and characterisation of a new class of phosphine-phosphonite ferrocenediyl dinuclear rhodium complexes. J Organomet Chem 689:766–769

    Article  CAS  Google Scholar 

  11. Trzeciak A, Štěpnička P, Mieczyńska E, Ziółkowski J (2005) Rhodium (I) complexes with 1′-(diphenylphosphino) ferrocenecarboxylic acid as active and recyclable catalysts for 1-hexene hydroformylation. J Organomet Chem 690:3260–3267

    Article  CAS  Google Scholar 

  12. Peng X, Wang Z, Xia C, Ding K (2008) Ferrocene-based bidentate phosphonite ligands for rhodium (I)-catalyzed enantioselective hydroformylation. Tetrahedron Lett 49:4862–4864

    Article  CAS  Google Scholar 

  13. Kühnert J, Ecorchard P, Lang H (2008) Heterometallic transition-metal complexes based on 1-carboxy-1′-(diphenylphosphanyl) ferrocene,(tmeda/pmdta) zinc (II), and gold (I) units. Eur J Inorg Chem 2008:5125–5137

    Article  CAS  Google Scholar 

  14. Bebbington M, Bontemps S, Bouhadir G, Hanton M, Tooze R, Van Rensburg H, Bourissou D (2010) A 1,1′-ferrocenyl phosphine-borane: synthesis, structure and evaluation in Rh-catalyzed hydroformylation. New J Chem 34:1556–1559

    Article  CAS  Google Scholar 

  15. Madalkska M, Lonnecke P, Hey-Hawkins E (2014) Aryl-based ferrocenyl phosphine ligands in the rhodium (I)-catalyzed hydroformylation of olefins. J Mol Catal A 384:137–142

    Article  CAS  Google Scholar 

  16. Stockmann S, Lonnecke P, Bauer S, Hey-Hawkins E (2014) Heterobimetallic complexes with ferrocenyl-substituted phosphaheterocycles. J Organomet Chem 751:670–677

    Article  CAS  Google Scholar 

  17. Gupta K, Sutar A (2008) Catalytic activities of Schiff base transition metal complexes. Coord Chem Rev 252:1420–1450

    Article  CAS  Google Scholar 

  18. Siangwata S, Baartzes N, Makhubela B, Smith G (2015) Synthesis, characterisation and reactivity of water-soluble ferrocenylimine-Rh(I) complexes as aqueous-biphasic hydroformylation catalyst precursors. J Organomet Chem 769:26–32

    Article  CAS  Google Scholar 

  19. Siangwata S, Chulu S, Oliver C, Smith G (2016) Rhodium-catalysed hydroformylation of 1-octene using aryl and ferrocenyl Schiff base-derived ligands. Appl Organomet Chem 31(4):1–9

    Google Scholar 

  20. Breckwoldt N, Goosen N, Van der Gryp P, Smith G (2019) Hydroformylation of the post-metathesis product 7-tetradecene using rhodium(I) Schiff base derived precatalysts. Appl Catal A 573:49–55

    Article  CAS  Google Scholar 

  21. Deshpande R, Chaudhari R (1988) Kinetics of hydroformylation of 1-hexene using homogeneous HRh(CO)(PPh3)3 complex catalyst. Ind Eng Chem Res 27:1996–2002

    Article  CAS  Google Scholar 

  22. Bhanage B, Divekar S, Deshpande R, Chaudhari R (1997) Kinetics of hydroformylation of l-dodecene using homogeneous HRh(CO)(PPh3)3 catalyst. J Mol Catal A 115:247–257

    Article  CAS  Google Scholar 

  23. Deshpande R, Bhanage B, Divekar S, Kanagasabapathy S, Chaudhari R (1998) Kinetics of hydroformylation of ethylene in a homogeneous medium: comparison in organic and aqueous systems. Ind Eng Chem Res 37:2391–2396

    Article  CAS  Google Scholar 

  24. Nair V, Mathew S, Chaudhari R (1999) Kinetics of hydroformylation of styrene using homogeneous rhodium complex catalyst. J Mol Catal A 143:99–110

    Article  CAS  Google Scholar 

  25. Kiss G, Mozeleski E, Nadler K, Van Driessche E, DeRoover C (1999) Hydroformylation of ethene with triphenylphosphine modified rhodium catalyst: kinetic and mechanistic studies. J Mol Catal A 138:155–176

    Article  CAS  Google Scholar 

  26. Rosales M, Gonzalez A, Guerrero Y, Pacheco I, Sanchez-Delgado R (2007) Kinetics and mechanisms of homogeneous catalytic reactions: part 7. Hydroformylation of 1-hexene catalyzed by cationic complexes of rhodium and iridium containing PPh3. J Mol Catal A 270:241–249

    Article  CAS  Google Scholar 

  27. Bernas A, Maki-Arvela P, Lehtonen J, Salmi T, Murzin D (2008) Kinetic modeling of propene hydroformylation with Rh/TPP and RH/CHDPP catalysts. Ind Eng Chem Res 47:4317–4324

    Article  CAS  Google Scholar 

  28. Rosales M, Chacon G, Gonzalez A, Pacheco I, Baricelli P, Melean L (2008) Kinetics and mechanisms of homogeneous catalytic reactions Part 9. Hydroformylation of 1-hexene catalyzed by a rhodium system containing a tridentated phosphine. J Mol Catal A 287:110–114

    Article  CAS  Google Scholar 

  29. Güven S, Hamers B, Franke R, Priske M, Becker M, Vogt D (2014) Kinetics of cyclooctene hydroformylation for continuous homogeneous catalysis. Catal Sci Technol 4:524–530

    Article  Google Scholar 

  30. Li X, Zhang K, Qin L, Ma H (2017) Kinetic studies of hydroformylation of 1-butene using homogeneous Rh/PPh3 complex catalyst. Mol Catal 443:270–279

    Article  CAS  Google Scholar 

  31. Breckwoldt N, Goosen N, Vosloo H, Van der Gryp P (2019) Kinetic evaluation of the hydroformylation of the post-metathesis product 7-tetradecene using bulky phosphite-modified rhodium catalyst. React Chem Eng 4:695–704

    Article  CAS  Google Scholar 

  32. Van der Gryp P, Marx S, Vosloo HCM (2012) Experimental, DFT and kinetic study of 1-octene metathesis with Hoveyda-Grubbs second generation precatalyst. J Mol Catal A 355:85–95

    Article  CAS  Google Scholar 

  33. Fogler H (2014) Elements of chemical reaction engineering. Pearson, London

    Google Scholar 

  34. Evans D, Osborn J, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 11:3133–3142

    Article  Google Scholar 

  35. Shaharun M, Dutta B, Mukhtar H, Maitra S (2010) Hydroformylation of 1-octene using rhodium-phosphite catalyst in a thermomorphic solvent system. Chem Eng Sci 65:273–281

    Article  CAS  Google Scholar 

  36. Koeken A, Van den Broeke L, Benes N, Keurentjes J (2011) Triphenylphosphine modified rhodium catalyst for hydroformylation in supercritical carbon dioxide. J Mol Catal A 346:94–101

    Article  CAS  Google Scholar 

  37. Kiedorf G, Hoang D, Müller A, Jörke A, Markert J, Arellano-Garcia H, Seidel-Morgenstern A, Hamel C (2014) Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst. Chem Eng Sci 115:31–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the DST-NRF Centre of Excellence (CoE) in Catalysis towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the CoE. The authors also wish to thank the University of Stellenbosch and University of Cape Town for additional financial support towards this research and Shepherd Siangwata for skilled guidance and assistance in preparing the precatalyst used for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. C. Breckwoldt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breckwoldt, N.C.C., Smith, G.S., Van der Gryp, P. et al. Kinetic evaluation of the hydroformylation of the post-metathesis product 7-tetradecene using a heterobimetallic rhodium-ferrocenyl Schiff base derived precatalyst. Reac Kinet Mech Cat 128, 333–347 (2019). https://doi.org/10.1007/s11144-019-01628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01628-3

Keywords

Navigation