Skip to main content
Log in

Correlation of metal–organic framework structures and catalytic performance in Fischer–Tropsch synthesis process

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Two typical metal–organic frameworks (MOFs), i.e. tris(pyridine-2-carboxylato)-cobalt(III) monohydrate (MOF-1) and (μ2-pyridine 2,6-dicarboxylato)(pyridine 2,6-dicarboxylato) pentaaqua dicobalt(II)dihydrate (MOF-2) were employed for preparation of cobalt Fischer–Tropsch catalysts. Both MOF-derived catalysts were obtained by direct pyrolysis in N2 atmosphere at 500 °C. The pyrolysis of desired MOFs resulted nanoparticles embedded in the porous carbon matrix. Such catalysts can serve as useful catalysts for FT synthesis. Co-MOF-1 derived catalyst exhibited carbon monoxide conversion of 74.8% and selectivity towards long-chain hydrocarbons (C5+) of 49.2%. Also, it showed selectivity for short-chain hydrocarbons (C2–C4) of 36.19% for 50 h on steam while Co-MOF-2 derived catalyst displayed CO conversion of 81.6% and selectivity for long-chain hydrocarbons (C5+) and short-chain hydrocarbons of 56.8% and 28.2%. The superb activity and catalytic efficiency can be ascribed to the MOF precursors structures. This study investigated the relationship between MOF structure and catalytic performance and presented a new approach to design novel super active catalysts with preferable selectivity for Fischer–Tropsch synthesis by opting the suitable MOF precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiong H, Jewell LL, Coville NJ (2015) ACS Catal 5(4):2640–2658

    Article  CAS  Google Scholar 

  2. Sun X, Suarez AIO, Meijerink M, Van Deelen T, Ould-Chikh S, Zečević J et al (2017) Nat Commun 8(1):1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santos VP, Wezendonk TA, Jaén JJD, Dugulan AI, Nasalevich MA, Islam HU et al (2015) Nat Commun 6:6451

    Article  CAS  PubMed  Google Scholar 

  4. Qiu B, Yang C, Guo W, Xu Y, Liang Z, Ma D, Zou R (2017) J Mater Chem A 5(17):8081–8086

    Article  CAS  Google Scholar 

  5. Cui Y, Li B, He H, Zhou W, Chen B, Qian G (2016) Acc Chem Res 49(3):483–493

    Article  CAS  PubMed  Google Scholar 

  6. Loera-Serna S, Ortiz E (2016) Catalytic applications of metal-organic frameworks. In: Luis N (ed) Advanced catalytic materials-photocatalysis and other current trends. InTech, Rijeka

    Google Scholar 

  7. Majewski MB, Peters AW, Wasielewski MR, Hupp JT, Farha OK (2018) ACS Energy Lett 3(3):598–611

    Article  CAS  Google Scholar 

  8. Bedel L, Roger AC, Estournes C, Kiennemann A (2003) Catal Today 85(2–4):207–218

    Article  CAS  Google Scholar 

  9. Bedel L, Roger AC, Rehspringer JL, Zimmermann Y, Kiennemann A (2005) J Catal 235(2):279–294

    Article  CAS  Google Scholar 

  10. An B, Cheng K, Wang C, Wang Y, Lin W (2016) ACS Catal 6(6):3610–3618

    Article  CAS  Google Scholar 

  11. Fu AY, Wang DQ (2005) Acta Crystallogr Sect E 61(3):m481-2

    Google Scholar 

  12. Yang L, Crans DC, Miller SM, la Cour A, Anderson OP, Kaszynski PM, Godzala ME, Austin LD, Willsky GR (2002) Inorg Chem 41(19):4859–4871

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Wang C, Chen S, Liu Y (2014) Int J Hydrog Energy 39(11):5644–5652

    Article  CAS  Google Scholar 

  14. Visconti CG, Lietti L, Tronconi E, Forzatti P, Zennaro R, Finocchio E (2009) Appl Catal A 355(1–2):61–68

    Article  CAS  Google Scholar 

  15. Arsalanfar M, Mirzaei AA, Atashi H, Bozorgzadeh HR, Vahid S, Zare A (2012) Fuel Process Technol 96:150–159

    Article  CAS  Google Scholar 

  16. Mirzaei AA, Faizi M, Habibpour R (2006) Appl Catal A 306:98–107

    Article  CAS  Google Scholar 

  17. Mirzaei AA, Shahriari S, Arsalanfar M (2011) J Nat Gas Sci Eng 3(4):537–546

    Article  CAS  Google Scholar 

  18. Fu T, Liu R, Lv J, Li Z (2014) Fuel Process Technol 122:49–57

    Article  CAS  Google Scholar 

  19. He L, Weniger F, Neumann H, Beller M (2016) Angew Chem Int Ed 55(41):12582–12594

    Article  CAS  Google Scholar 

  20. Yang Z, Guo S, Pan X, Wang J, Bao X (2011) Energy Environ Sci 4(11):4500–4503

    Article  CAS  Google Scholar 

  21. Vannice MA, Garten RL (1980) J Catal 66(1):242–247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Sistan and Baluchestan for support this funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halimeh Janani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janani, H., Mirzaei, A.A. & Rezvani, A. Correlation of metal–organic framework structures and catalytic performance in Fischer–Tropsch synthesis process. Reac Kinet Mech Cat 128, 205–215 (2019). https://doi.org/10.1007/s11144-019-01626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01626-5

Keywords

Navigation