Skip to main content
Log in

Valorization of coal treatment residues as a host matrix of nanosized nickel, copper and zinc ferrites

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

High quality activated carbon was prepared using by-products from the pyrolysis of low rank coals as a precursor. The obtained carbon material was applied as a host matrix of nanosized MFe2O4 ferrites (M = Ni, Cu or Zn). XRD, Mössbauer and TPR analyses were performed for samples characterization and their catalytic behavior in methanol decomposition as a source of hydrogen was tested. In contrast to the reference mesoporous KIT-6 silica based analogues, the active phase in the carbon modifications was more accessible for the reactants and represented a complex mixture of metals, alloys, substituted magnetite and finely dispersed ferrites, which ensured their higher catalytic activity in methanol decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Luo M, Yi Y, Wang S, Wang Z, Du M, Pan J, Wang Q (2018) Review of hydrogen production using chemical-looping technology. Renew Sust Energy Rev 81:3186–3214

    Article  CAS  Google Scholar 

  2. Rifkin J (2003) The hydrogen economy. Penguin Publishing Group, New York

    Google Scholar 

  3. Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40:11094–11111

    Article  CAS  Google Scholar 

  4. Qi A, Peppley B, Karan K (2007) Integrated fuel processors for fuel cell application: a review. Fuel Process Technol 88:3–22

    Article  CAS  Google Scholar 

  5. Hill JM (2017) Sustainable and/or waste sources for catalysts: porous carbon development and gasification. Catal Today 285:204–210

    Article  CAS  Google Scholar 

  6. Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sust Energy Rev 87:1–21

    Article  CAS  Google Scholar 

  7. García PG (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sust Energy Rev 82:1393–1414

    Article  CAS  Google Scholar 

  8. Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem Eng Res Des 129:271–296

    Article  CAS  Google Scholar 

  9. Saleem J, Riaz MA, McKay G (2018) Oil sorbents from plastic wastes and polymers: a review. J Hazar Mater 341:424–437

    Article  CAS  Google Scholar 

  10. Bader N, Ouederni A (2017) Functionalized and metal-doped biomass-derived activated carbons for energy storage application. J Energy Storage 13:268–276

    Article  Google Scholar 

  11. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    Article  CAS  Google Scholar 

  12. Lazaro MJ, Ascaso S, Perez-Rodrıguez S, Calderon JC, Galvez ME, Nieto MJ, Moliner R, Boyano A, Sebastian D, Alegre C, Calvillo L, Celorrio V (2015) Carbon-based catalysts: synthesis and applications. C R Chimie 18:1229–1241

    Article  CAS  Google Scholar 

  13. Fu T, Li Z (2015) Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis. Chem Eng Sci 135:3–20

    Article  CAS  Google Scholar 

  14. Zeng T, Yu M, Zhang H, He Z, Zhang X, Chen J, Song S (2017) In situ synthesis of cobalt ferrites-embedded hollow N-doped carbon as an outstanding catalyst for elimination of organic pollutants. Sci Total Environ 593–594:286–296

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Yang X, Liu C, Chen P, Yue X, Zhang S (2016) Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts. J Taiwan Inst Chem E 65:233–241

    Article  CAS  Google Scholar 

  16. Restivo J, Soares OSGP, Órfão JJM, Pereira MFR (2015) Bimetallic activated carbon supported catalysts for the hydrogen reduction of bromate in water. Catal Today 249:213–219

    Article  CAS  Google Scholar 

  17. Konwar LJ, Boro J, Deka D (2014) Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sust Energy Rev 29:546–564

    Article  CAS  Google Scholar 

  18. Kordouli E, Kordulis Ch, Lycourghiotis A, Cole R, Vasudevan PT, Pawelec B, Fierro JLG (2017) HDO activity of carbon-supported Rh, Ni and Mo–Ni catalysts. Mol Catal 44:209–220

    Article  CAS  Google Scholar 

  19. Murciano LT, Hill AK, Bell TE (2017) Ammonia decomposition over cobalt/carbon catalysts-effect of carbon support and electron donating promoter on activity. Catal Today 286:131–140

    Article  CAS  Google Scholar 

  20. Mahmoudi M, Dentzer J, Gadiou R, Ouederni A (2017) Evaluation of activated carbons based on olive stones as catalysts during hydrogen production by thermocatalytic decomposition of methane. Int J Hydrogen Energy 42:8712–8720

    Article  CAS  Google Scholar 

  21. Zhang J, Li X, Chen H, Qi M, Zhang G, Hu H, Ma X (2017) Hydrogen production by catalytic methane decomposition: carbon materials as catalysts or catalyst supports. Int J Hydrogen Energy 42:19755–19775

    Article  CAS  Google Scholar 

  22. Sun Y, Zhang G, Liu J, Zhao P, Hou P, Xu Y, Zhang R (2018) Effect of different activated carbon support on CH4–CO2 reforming over Co-based catalysts. Int J Hydrogen Energy 43:1497–1507

    Article  CAS  Google Scholar 

  23. Szymanska M, Malaika A, Rechnia P, Miklaszewska A, Kozłowski M (2015) Metal/activated carbon systems as catalysts of methane decomposition reaction. Catal Today 249:94–102

    Article  CAS  Google Scholar 

  24. Hakamizadeh M, Afshar S, Tadjarodi A, Khajavian R, Fadaie MR, Bozorgi B (2014) Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite. Int J Hydrogen Energy 39:7262–7269

    Article  CAS  Google Scholar 

  25. Tsoncheva T, Mileva A, Tsyntsarski B, Paneva D, Spassova I, Kovacheva D, Velinov N, Karashanova D, Georgieva B, Petrov N (2018) Activated carbon from Bulgarian peach stones as a support of catalysts for methanol decomposition. Biomass Bioenergy 109:135–146

    Article  CAS  Google Scholar 

  26. Tsoncheva T, Mileva A, Paneva D, Kovacheva D, Spassova I, Nihtianova D, Markov P, Petrov N, Mitov I (2016) Zinc ferrites hosted in activated carbon from waste precursors as catalysts in methanol decomposition. Micropor Mesopor Mater 229:59–67

    Article  CAS  Google Scholar 

  27. Tsoncheva T, Mileva A, Marinov SP, Paneva D, Velinov N, Spassova I, Kosateva A, Kovacheva D, Petrov N (2018) Activated carbons from used motor oil as catalyst support for sustainable environmental protection. Micropor Mesopor Mater 259:9–16

    Article  CAS  Google Scholar 

  28. Manova E, Tsoncheva T, Paneva D, Mitov I, Tenchev K, Petrov L (2004) Mechanochemically synthesized nano-dimensional iron-cobalt spinel oxides as catalysts for methanol decomposition. Appl Catal A 277:119–127

    Article  CAS  Google Scholar 

  29. Manova E, Tsoncheva T, Paneva D, Rehspringer JL, Tenchev K, Mitov I, Petrov L (2007) Synthesis, characterization and catalytic properties of nanodimensional nickel ferrite/silica composites. Appl Catal A 317:34–42

    Article  CAS  Google Scholar 

  30. Tsoncheva T, Manova E, Velinov N, Paneva D, Popova M, Kunev B, Tenchev K, Mitov I (2010) Thermally synthesized nanostructured copper ferrites as catalysts for environmentally friendly catalytic reactions. Catal Commun 12:105–109

    Article  CAS  Google Scholar 

  31. Koleva K, Velinov N, Tsoncheva T, Mitov I (2014) Mössbauer study of Cu1−xZnxFe2O4 catalytic materials. Hyperfine Interact 226:89–97

    Article  CAS  Google Scholar 

  32. Velinov N, Manova E, Tsoncheva T, Estournès C, Paneva D, Tenchev K, Perkova V, Koleva K, Kunev B, Mitov I (2012) Spark plasma sintering synthesis of Ni1−xZnxFe2O4 ferrites: Mössbauer and catalytic study. Solid State Sci 14:1092–1099

    Article  CAS  Google Scholar 

  33. Velinov N, Koleva K, Tsoncheva T, Manova E, Paneva D, Tenchev K, Kunev B, Mitov I (2013) Nanosized Cu0.5Co0.5Fe2O4 ferrite as catalyst for methanol decomposition: effect of preparation procedure. Catal Commun 32:41–46

    Article  CAS  Google Scholar 

  34. Ehrhardt H, Campbell SJ, Hofmann M (2003) Magnetism of the nanostructured spinel zinc ferrite. Scripta Mater 48:1141–1146

    Article  CAS  Google Scholar 

  35. Jiang NN, Yang Y, Zhang YX, Zhou JP, Liu P, Deng CY (2016) Influence of zinc concentration on structure, complex permittivity and permeability of Ni–Zn ferrites at high frequency. J Magnet Magnet Mater 401:370–377

    Article  CAS  Google Scholar 

  36. Mukherjee A, Chakrabarty S, Su WN, Basu S (2018) Nanostructured nickel ferrite embedded in reduced graphene oxide for electrocatalytic hydrogen evolution reaction. Mater Today Energy 8:118–124

    Article  Google Scholar 

  37. Mohammadzadeh A, Ramezani M, Ghaedi AM (2016) J Taiwan Inst Chem Eng 59:275–284

    Article  CAS  Google Scholar 

  38. Mohan B, Park KH (2016) Superparamagnetic copper ferrite nanoparticles catalyzed aerobic, ligand-free, regioselective hydroboration of alkynes: influence of synergistic effect. Appl Catal A 519:78–84

    Article  CAS  Google Scholar 

  39. Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 17:2136–2137

    Article  CAS  Google Scholar 

  40. Al-Ghamdi A, Al-Hazmi FS, Memesh LS, Shokr FS, Bronstein LM (2017) Effect of mechanochemical synthesis on the structure, magnetic and optical behavior of Ni1−xZnxFe2O4 spinel ferrites. Ceram Int 43:6192–6200

    Article  CAS  Google Scholar 

  41. Sudheesh VD, Thomas N, Roona N, Choudhary H, Sahoo B, Lakshmi N, Sebastian V (2018) Synthesis of nanocrystalline spinel ferrite (MFe2O4, M = Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratio. J Alloys Compd 742:577–586

    Article  CAS  Google Scholar 

  42. Benraba R, Lufberg A, Rubbens A, Bordes-Richard E, Vannier RN, Barama A (2013) Structure, reactivity and catalytic properties of nanoparticles of nickel ferrite in the dry reforming of methane. Catal Today 203:188–195

    Article  CAS  Google Scholar 

  43. Nair DS, Kurian M (2017) Catalytic peroxide oxidation of persistent chlorinated organics over nickel–zinc ferrite nanocomposites. J Water Proc Eng 16:69–80

    Article  Google Scholar 

  44. Zawadzki J, Azambre B, Heintz O, Krzton A, Weber J (2000) IR study of the adsorption and decomposition of methanol on carbon surfaces and carbon-supported catalysts. Carbon 38:509–515

    Article  CAS  Google Scholar 

  45. Levis RJ, Zhicheng J, Winograd N (1989) Thermal decomposition of CH3OH adsorbed on Pd11: a new reaction pathway involving CH3 formation. J Am Chem Soc 111:4605–4612

    Article  CAS  Google Scholar 

  46. Essenhigh K, Utkin Y, Bernard C, Adamovich I, Rich J (2006) Chemical physics gas-phase Boudouard disproportionation reaction between highly vibrationally excited CO molecules. Chem Phys 330:506–514

    Article  CAS  Google Scholar 

  47. Auroux A, Gervasini A, Guimon C (1999) Acidic character of metal-loaded amorphous and crystalline silica–aluminas determined by XPS and adsorption calorimetry. J Phys Chem B 103:7195–7205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support Bulgarian National Science Fund, project KП-06-29/2 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Tsoncheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoncheva, T., Spassova, I., Ivanova, R. et al. Valorization of coal treatment residues as a host matrix of nanosized nickel, copper and zinc ferrites. Reac Kinet Mech Cat 127, 691–703 (2019). https://doi.org/10.1007/s11144-019-01596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01596-8

Keywords

Navigation