Skip to main content
Log in

Acid catalyzed acetalization of aldehydes with diols resulting into the formation of fragrant cyclic acetals

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The influence of reaction conditions (amount and type of the catalyst, the reaction temperature, the type of the solvent) on the reaction course of the acetalization of aldehydes with diols was tested in this paper. The optimization of reaction conditions was performed on model reaction, acetalization of 2-methylpentanal by 2-methyl-2-propyl-1,3-propanediol leading to the formation of fragrant compound 2-(1-methylbutyl)-5-methyl-5-propyl-1,3-dioxane (Troenan). p-Toluenesulfonic acid was used as an active homogeneous catalyst. It appeared to be advantageous not to use any solvent in the reaction. Using 0.3 wt% of the catalyst the almost total conversion of 2-methylpentanal was achieved after 240 min of reaction at room temperature while the selectivity to the desired product was about 98%. The optimized reaction conditions were applied to the preparation of four cyclic fragrant acetals (namely 2-hexyl-1,3-dioxolane, 2-hexyl-4-methyl-1,3-dioxolane, 2-benzyl-5-hydroxy-1,3-dioxane and 2-(1-methylbutyl)-5-methyl-5-propyl-1,3-dioxane) in larger scale; and these were sensory evaluated after purification step. Prepared heterogeneous catalysts, acid modified montmorillonite (MMT) K-10 (treated by H2SO4, HNO3, and HCl) were successful in the model reaction. The conversion of 2-methylpentanal over 90% was achieved using acid modified MMT after 300 min of reaction at room temperature, the selectivity to the desired product was about 98%. MMT/H2SO4 can be used in the model reaction four times without any change in the reaction course, what makes it promising for the further application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sekerová L, Frýbová M, Vyskočilová E, Červený L (2017) Proceeding paper, ICCT Mikulov, poster, http://www.icct.cz/AngiologyKlon-ICCT/media/system/ICCT2017-full_papers.pdf. Accessed 13 Nov 2018

  2. Climent MJ, Corma A, Velty A (2004) Appl Catal A 263:155–161

    Article  CAS  Google Scholar 

  3. Ledneczki I, Darányi M, Fulop F, Molnár Á (2005) Catal Today 100:437–440

    Article  CAS  Google Scholar 

  4. Wang B, Gu Y, Song G, Yang T, Yang L, Suo J (2005) J Mol Catal A 233(1):121–126

    Article  CAS  Google Scholar 

  5. Silva VMTM, Gandi GK, Ridrigues AE (2007) Development of simulated moving bed reactor using a cation exchange resin as a catalyst and adsorbent for the synthesis of acetals in ion exchange and solvent extraction, a series of advance. In: SenGupta AK (ed), CRC Press Taylor and Francis, Boca Raton, p 45

  6. Surburg H, Panten J (2006) Common fragrance and flavour materials. Wiley, Weinheim

    Book  Google Scholar 

  7. Cherkaev G, Timonin SA, Yakovleva GF, Shutikova L, Mikhailova AS, Shapiro LD (1987) Patent: US 1 337 384

  8. Upadek H, Bruns K (1980) Patent: DE 3016007 A1

  9. Markert T, Merkel D, Altenbach HJ (1999) Patent: WO 99/02515

  10. Rossiter KJ (1999) Patent: US 005888961 A

  11. Lappe P, Schmid K, Söllner R, Springer H (2002) Patent: EP 1 316 553 A1

  12. Yadav GD, Katole SO (2014) Catal Today 237:125–135

    Article  CAS  Google Scholar 

  13. Kowalska-Kus J, Held A, Nowinska K (2016) Reac Kinet Mech Cat 117(1):341–352

    Article  CAS  Google Scholar 

  14. Rodrigues R, Mandelli D, Goncalves NS, Pescarmona PP, Carvalho WA (2016) J Mol Catal A 422:122–130

    Article  CAS  Google Scholar 

  15. Wang W, Wang Y, Cheng W, Wang J, Yang J, He M (2008) Chin Sci Bull 53(17):2612–2616

    Article  CAS  Google Scholar 

  16. Silva CAC, Figueiredo FCA, Rodrigues R, Sairre MI, Gonsalves M, Matos I, Fonseca IM, Mandelli D, Carvalho WA (2016) Clean Technol Environ 18(5):1551–1563

    Article  CAS  Google Scholar 

  17. Farook A, Batagarawa MS, Hello KM, Al-Juaid SS (2012) Chem Pap 66(11):1048–1058

    Google Scholar 

  18. Gutiérrez-Acebo E, Guerrero-Ruiz F, Centenero M, Martínez JS, Salagre P, Cesteros Y (2018) Open Chem 16(1):386–392

    Article  CAS  Google Scholar 

  19. Li R, Song H, Chen J (2018) Catalysts 8(8):297–314

    Article  CAS  Google Scholar 

  20. Nandan E, Sreenivasulu P, Konathala LNS, Kumar M, Viswanadham N (2013) Microporous Mesoporous Mater 179:182–190

    Article  CAS  Google Scholar 

  21. Arctander S, Perfume and Flavor Chemicals (1969) Aroma chemicals. Montclair, Montclair

    Google Scholar 

  22. Perflavory Information system; www.perflavory.com. Accessed 20 Dec 2018

  23. Weber L, Al-Refae K, Ebbert J, Jägers P, Altmüller J, Becker Ch, Hahn S, Gisselmann G, Hatt H (2017) PLoS ONE 12(3):1–27

    Article  CAS  Google Scholar 

  24. Kotachi S, Fukuda K (2010) Patent: EP 1 939 193 B1

  25. Baishya G, Sarman B, Hazarika N (2013) Synlett 24(9):1137–1141

    Article  CAS  Google Scholar 

  26. Vyskočilová E, Gruberová A, Shamzhy M, Vrbková E, Krupka J, Červený L (2018) Reac Kinet Mech Cat 124:711–725

    Article  CAS  Google Scholar 

  27. Bieseki L, Bertellab F, Treichelc H, Penhad FG, Perghera SBC (2013) Mater Res 16(5):1122–1127

    Article  CAS  Google Scholar 

  28. Pushpletha P, Rugmini S, Lalithambika M (2005) Appl Clay Sci 30:141–153

    Article  CAS  Google Scholar 

  29. Virtual Textbook of Organic Chemistry, Michigan State University, Dep. Of Chemistry, www2.chemistry.msu.edu/faculty/reusch/VirtTxtjml/enrgtop.htm#top4. Accessed 20 Dec 2018

  30. Kurbanov D, Pastushenko EV, Kheikimov YK, Zlotskii SS, Rakhmankulov DL (1984) Izvestiya Akademii Nauk Turkmenskoi SSR. Seriya Fiziko-Tekhnicheskikh, Khimicheskikh i Geologicheskikh Nauk 1:108–109

    Google Scholar 

  31. Product Data Sheet, Dow Chemical; http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_09b7/0901b803809b7b11.pdf?filepath=liquidseps/pdfs/noreg/177-03087.pdf&fromPage=GetDoc. Accessed 20 Dec 2018

  32. Niva M, Suzuki K, Katada N (2006) Proceeding paper; presented at 16th Saudi Arabia-Japan Joint Symposium, Dahran, Saudi Arabia

Download references

Acknowledgements

This work was realized within the Operational Programme Prague – Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability” ((NPU I LO1613) MSMT-43760/2015). We also acknowledge Specific University Research (MSMT NO 21-SVV/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lada Sekerová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekerová, L., Spáčilová, M., Vyskočilová, E. et al. Acid catalyzed acetalization of aldehydes with diols resulting into the formation of fragrant cyclic acetals. Reac Kinet Mech Cat 127, 727–740 (2019). https://doi.org/10.1007/s11144-019-01595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01595-9

Keywords

Navigation