Skip to main content
Log in

Mathematical modeling of the kinetics of a highly sensitive enzyme biosensor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present paper, the mathematical modeling of highly sensitive enzyme biosensor kinetics is discussed. The standard method of inverting a Laplace transform according to the Heaviside expansion theorem is applied to solve the coupled nonlinear time-dependent reaction–diffusion equations for the Michaelis–Menten expression that describes the concentrations of the substrate and product within the enzymatic layer. The analytical expressions for the concentration of the substrate and product have been derived for all values of the rate constant. A numerical simulation is also reported using the MATLAB software program. Our analytical results are compared with our simulation results. The analytical results show good agreement with those obtained using numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gil ED, de Melo GR (2010) Electrochemical biosensors in pharmaceutical analysis. Braz J Pharm Sci 46:375–391

    Article  CAS  Google Scholar 

  2. Djaalab E, Samar MEH, Zougar S, Kherrat R (2018) Electrochemical biosensor for the determination of amlodipine besylate based on gelatin-polyaniline iron oxide biocomposite film. Catalysts 8:233

    Article  CAS  Google Scholar 

  3. Wanekaya AK, Chen W, Mulchandani A (2008) Recent biosensing developments in environmental security. J Environ Monit 10:703–710

    Article  CAS  PubMed  Google Scholar 

  4. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensors for food analysis. Monatsh Chem 140:891–899

    Article  CAS  Google Scholar 

  5. Sethuraman V, Muthuraja P, Raj JA, Manisankar P (2016) A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide–metal oxide enzyme modified electrode. Biosens Bioelectron 84:112–119

    Article  CAS  PubMed  Google Scholar 

  6. Zehani N, Fortgang P, Saddek LM, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N (2015) Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotubetyrosinase hybrid film. Biosens Bioelectron 74:830–835

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Hu J, Zhang G, Liu S (2014) Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission. J Am Chem Soc 136(28):9890–9893

    Article  CAS  PubMed  Google Scholar 

  8. Tang H, Yan F, Lin P, Xu J, Chan HLW (2011) Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv Func Mater 21(12):2264–2272

    Article  CAS  Google Scholar 

  9. Zheng Z, Zhou Y, Li X, Liu S, Tang Z (2011) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 26(6):3081–3085

    Article  CAS  PubMed  Google Scholar 

  10. Lu J, Drzal LT, Worden RM, Lee I (2007) Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem Mater 19(25):6240–6246

    Article  CAS  Google Scholar 

  11. Lee D, Lee J, Kim J, Kim J, Na HB, Kim B, Kim HS (2005) Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam. Adv Mater 17(23):2828–2833

    Article  CAS  Google Scholar 

  12. Lente G (2017) Advanced data analysis and modelling in chemical engineering. Reac Kinet Mech Cat 120(2):417–420

    Article  CAS  Google Scholar 

  13. Yang KZ, Twaiq F (2017) Modelling of the dry reforming of methane in different reactors: a comparative study. Reac Kinet Mech Cat 122(2):853–868

    Article  CAS  Google Scholar 

  14. Elizalde I, Trejo F, Muñoz JA, Torres P, Ancheyta J (2016) Dynamic modeling and simulation of a bench-scale reactor for the hydrocracking of heavy oil by using the continuous kinetic lumping approach. Reac Kinet Mech Cat 118(1):299–311

    Article  CAS  Google Scholar 

  15. Izadbakhsh A, Khatami A (2014) Mathematical modeling of methanol to olefin conversion over SAPO-34 catalyst using the percolation concept. Reac Kinet Mech Cat 112(1):77–100

    Article  CAS  Google Scholar 

  16. Marečić M, Jović F, Kosar V, Tomašić V (2011) Modelling of an annular photocatalytic reactor. Reac Kinet Mech Cat 103(1):19–29

    Article  CAS  Google Scholar 

  17. Le TD, Lasseux D, Nguyen XP, Vignoles G, Mano N, Kuhn A (2017) Multi-scale modeling of diffusion and electrochemical reactions in porous micro-electrodes. Chem Eng Sci 173:153–167

    Article  CAS  Google Scholar 

  18. Ingham J (2000) Chemical engineering dynamics: an introduction to modelling and computer simulation. Wiley-VCH, Weinheim

    Book  Google Scholar 

  19. Yeo YK (2017) Chemical engineering computation with MATLAB, 1st edn. CRC Press, Boca Raton, FL

    Google Scholar 

  20. AL Malah K (2013) MATLAB numerical methods with chemical engineering applications. McGraw Hill, New York

    Google Scholar 

  21. Buzzi-Ferraris G, Manenti F (2013) Nonlinear systems and optimization for the chemical engineer: Solving numerical problems. Wiley-VCH, Weinheim

    Book  Google Scholar 

  22. Ross G (1987) Computer programming examples for chemical engineers. Elsevier, Amsterdam

    Google Scholar 

  23. English BP, Min W, Van Oijen AM, Lee KT, Luo G, Sun H, Cherayil BJ, Kou SC, Xie XS (2006) Ever-fluctuating single enzyme molecules: Michaelis–Menten equation revisited. Nat Chem Biol 2(2):87–94

    Article  CAS  Google Scholar 

  24. Dóka É, Lente G (2012) Stochastic mapping of the Michaelis–Menten mechanism. J Chem Phys 136(5):054111

    Article  CAS  PubMed  Google Scholar 

  25. Kou SC, Cherayil BJ, Min W, English BP, Xie XS (2005) Single-molecule Michaelis–Menten equations. J Phys Chem B 109:19068–19081

    Article  CAS  PubMed  Google Scholar 

  26. Loney NW (2006) Applied mathematical methods for chemical engineers, 2nd edn. CRS Press, Boca Raton

    Google Scholar 

  27. Mathews JH, Howell RW (2012) Complex analysis for mathematics and engineering, 6th edn. Jones and Bartlett Learning, LLC, Bullington

    Google Scholar 

  28. MATLAB & Simulink, www.mathworks.com/help/matlab/ref/pdepe.html. Accessed 09 July, 2018

  29. Villadsen J, Nielsen J, Liden G (2011) Bioreaction engineering principles. Springer, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elbahi Djaalab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djaalab, E., Samar, M.E.H. & Zougar, S. Mathematical modeling of the kinetics of a highly sensitive enzyme biosensor. Reac Kinet Mech Cat 126, 49–59 (2019). https://doi.org/10.1007/s11144-018-1516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1516-8

Keywords

Navigation