Skip to main content
Log in

Mechanochemically modified hydrazine reduction method for the synthesis of nickel nanoparticles and their catalytic activities in the Suzuki–Miyaura cross-coupling reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The commonly used hydrazine reduction method for the synthesis of Ni nanoparticles was integrated with the mechanochemical treatment of the nickel hydroxide precursors to modify the structural and catalytic attributes of the as-prepared metallic nickel materials. The precursors and the nanoparticles were studied by X-ray diffractometry, infrared spectroscopy, and dynamic light scattering as well as scanning electron microscopy. The changes in catalytic activities were followed in the Suzuki–Miyaura cross-coupling reaction between iodobenzene and phenylboronic acid and correlated with structural changes resulting from mechanochemical pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xia BY, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  2. Din MI, Rani A (2016) Int J Anal Chem 4:1–14

    Google Scholar 

  3. Pascu O, Caicedo JM, Fontcuberta J, Herranz G, Roig A (2010) Langmuir 26:12548–12552

    Article  CAS  PubMed  Google Scholar 

  4. Gross E, Somorjai GA (2015) J Catal 328:91–101

    Article  CAS  Google Scholar 

  5. Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) RSC Adv 5:105003–105037

    Article  CAS  Google Scholar 

  6. Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Chem Rev 118:6409–6455

    Article  CAS  PubMed  Google Scholar 

  7. Tsuzuki T, Mccormick PG (2004) J Mater Sci 39:5143–5146

    Article  CAS  Google Scholar 

  8. Song QS, Chiu CH, Chan SLI (2005) J Appl Electrochem 36:97–103

    Article  CAS  Google Scholar 

  9. Yadav TP, Yadav RM, Singh DP (2012) J Nanosci Nanotechno 2:22–48

    Article  CAS  Google Scholar 

  10. Amoruso S, Ausanio G, de Lisio C, Iannotti V, Vitiello M, Wang X, Lanotte L (2005) Appl Surf Sci 247:71–75

    Article  CAS  Google Scholar 

  11. Jaworek A, Sobczyk AT (2008) J Electrostat 66:197–219

    Article  CAS  Google Scholar 

  12. Pandya SG, Shafer D, Kordesch ME (2015) Vacuum 114:124–129

    Article  CAS  Google Scholar 

  13. Veintemillas-Verdaguer S, Morales MP, Serna CJ (1998) Mater Lett 35:227–231

    Article  CAS  Google Scholar 

  14. Cross CE, Hemminger JC, Penner RM (2007) Langmuir 23:10372–10379

    Article  CAS  PubMed  Google Scholar 

  15. Bikiaris DN, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis GP (2006) J Appl Polym Sci 100:2684–2696

    Article  CAS  Google Scholar 

  16. Chen D-H, He X-R (2001) Mater Res Bull 36:1369–1377

    Article  CAS  Google Scholar 

  17. Zhang DE, Ni XM, Yang ZP, Zheng HG (2005) Mater Lett 59:2011–2014

    Article  CAS  Google Scholar 

  18. Liu B, Zeng HC (2003) J Am Chem Soc 125:4430–4431

    Article  CAS  PubMed  Google Scholar 

  19. Ying Z, Shengming J, Guanzhou Q, Min Y (2005) Mater Sci Eng, B 122:222–225

    Article  CAS  Google Scholar 

  20. Carroll KJ, Reveles JU, Shultz MD, Khanna SN, Carpenter EE (2011) J Phys Chem C 115:2656–2664

    Article  CAS  Google Scholar 

  21. Polarz S, Roy A, Merz M, Halm S, Schröder D, Schneider L, Bacher G, Kruis FE, Driess M (2005) Small 1:540–552

    Article  CAS  PubMed  Google Scholar 

  22. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Curr Sci 85:162–170

    CAS  Google Scholar 

  23. Mohanpuria P, Rana KN, Yadav SK (2008) J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  24. Aguilhon J, Boissière C, Durupthy O, Thomazeau C, Sanchez C (2010) Stud Surf Sci Catal 175:521–524

    Article  CAS  Google Scholar 

  25. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Chem Soc Rev 44:5793–5805

    Article  CAS  PubMed  Google Scholar 

  26. Wu ZG, Munoz M, Montero O (2010) Adv Powder Technol 21:165–168

    Article  CAS  Google Scholar 

  27. Heinicke G (1986) Tribochemistry. Akademie, Berlin

    Google Scholar 

  28. Takacs L (2013) Chem Soc Rev 42:7649–7659

    Article  CAS  PubMed  Google Scholar 

  29. James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Chem Soc Rev 41:413–447

    Article  CAS  Google Scholar 

  30. Howard JL, Cao Q, Browne DL (2018) Chem Sci 9:3080–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmadisoltansaraei K, Moghaddam J (2014) Int J Min Met Mater 21:726–730

    Article  CAS  Google Scholar 

  32. Chawake N, Varanasi RS, Jaswanth B, Pinto L, Kashyap S, Koundinya NTBN, Srivastav AK, Jain A, Sundararaman M, Kottada RS (2016) Mater Charact 120:90–96

    Article  CAS  Google Scholar 

  33. Ding P, Hou H, Pu S, Cao H, Wang L, Li J (2015) Phil Mag Lett 95:14–20

    Article  CAS  Google Scholar 

  34. Khayati GR, Nourafkan E, Karimi G, Moradgholi J (2013) Adv Powder Technol 24:301–305

    Article  CAS  Google Scholar 

  35. Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutková E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Chem Soc Rev 42:7571–7637

    Article  CAS  Google Scholar 

  36. Xu C, De S, Balu AM, Ojeda M, Luque R (2015) Chem Commun 51:6698–6713

    Article  CAS  Google Scholar 

  37. Boldyrev VV (1995) Ultrason Sonochem 2:S143–S145

    Article  CAS  Google Scholar 

  38. Suryanarayana C (2001) Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  39. Madavali B, Lee J-H, Lee JK, Cho KY, Challapalli S, Hong S-J (2014) Powder Technol 46:251–256

    Article  CAS  Google Scholar 

  40. Khoshkhoo MS, Scudino S, Gemming T, Thomas J, Freudenberger J, Zehetbauer M, Koch CC, Eckert J (2015) Mater Design 65:1083–1090

    Article  CAS  Google Scholar 

  41. Ádám AA, Szabados M, Polyákovics Á, Musza K, Kónya Z, Kukovecz Á, Sipos P, Pálinkó I (2019) J Nanosci Nanotechn 19:453–458

    Article  CAS  Google Scholar 

  42. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh H-J, Park J-H, Bae CJ, Park J-G, Hyeon T (2005) Adv Mater 17:429–434

    Article  CAS  Google Scholar 

  43. Cho CS, Tran NT (2008) Catal Commun 11:191–195

    Article  CAS  Google Scholar 

  44. Handa S, Slack ED, Lipshutz BH (2015) Angew Chem Int Ed 54:11994–11998

    Article  CAS  Google Scholar 

  45. Balaž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin Heidelberg

    Google Scholar 

  46. Ungár T, Tichy G, Gubicza J, Hellmig RJ (2005) Powder Diffr 20:366–375

    Article  CAS  Google Scholar 

  47. Song QS, Chiu CH, Chan SLI (2006) J Appl Electrochem 36:97–103

    Article  CAS  Google Scholar 

  48. Xu Z, Yu J, Liu G, Cheng B, Zhou P, Li X (2013) Dalton Trans 42:10190–10197

    Article  CAS  PubMed  Google Scholar 

  49. Elshahawy AM, Ho KH, Hu Y, Fan Z, Hsu YWB, Guan C, Ke Q, Wang J (2016) CrystEngComm 18:3256–3264

    Article  CAS  Google Scholar 

  50. Vilminot S, Richard-Plouet M, Andre G, Swierczynski D, Bourée-Vigneron F, Kurmoo M (2003) Inorg Chem 42:6859–6867

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Luo S, Wang Z, Fu Y (2013) Appl Clay Sci 80–81:334–339

    Article  CAS  Google Scholar 

  52. Amatore C, Jutand A (1988) Organometallics 7:2203–2214

    Article  CAS  Google Scholar 

  53. Baudin O (2007) Angew Chem Int Ed 46:1373–1375

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the GINOP-2.3.2-15-2016-00013 Grant. The financial help is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Pálinkó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musza, K., Szabados, M., Ádám, A.A. et al. Mechanochemically modified hydrazine reduction method for the synthesis of nickel nanoparticles and their catalytic activities in the Suzuki–Miyaura cross-coupling reaction. Reac Kinet Mech Cat 126, 857–868 (2019). https://doi.org/10.1007/s11144-018-1509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1509-7

Keywords

Navigation