Skip to main content
Log in

Aqueous-phase hydrogenation of furfural over supported palladium catalysts: effect of the support on the reaction routes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The effect of the support nature (different carbons, aluminum oxide, mixed MgAl oxide) on the activity of palladium catalysts and on the reaction routes of aqueous-phase hydrogenation of furfural at a temperature of 423 K and a pressure of 3 MPa was investigated. The carbon-supported catalysts were found to be the most active, and almost complete conversion of furfural is achieved. In the presence of these catalysts, the reaction proceeds predominantly through two parallel water-involved routes depending on the nature of carbon support: catalysts supported on carbon nanoglobules are selective to 4-oxopentanal (selectivity up to about 63%), while catalysts supported on carbon nanotubes give mainly cyclopentanone (selectivity up to 57%). The palladium catalysts based on the oxide supports (γ-Al2O3, MgAlOx) are much less active in the aqueous-phase hydrogenation of furfural compared to carbon-supported catalysts, and complete conversion of furfural does not occur (only up to 55%). In the presence of catalysts prepared using basic support (i.e., MgAl oxide), there are no reactions involving water, and furfuryl alcohol and tetrahydrofurfuryl alcohol are the principal products. According to the results of catalyst characterizations, the revealed differences in performance of palladium catalysts are caused by the effect of the support nature on the formation and dispersion of supported Pd nanoparticles, as well as by the distinctions in the structure and acid–base properties of the supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Alonso DM, Marcotullio G (2018) In: López Granados M, Alonso DM (eds) Furfural: an entry point of lignocellulose in biorefineries to produce renewable chemicals, polymers, and biofuels. World Scientific, Hackensack

    Google Scholar 

  2. Dias AS, Lima S, Pillinger M, Valente AA (2010) In: Pignataro B (ed) Ideas in chemistry and molecular sciences: advances in synthetic chemistry. Wiley, Weinheim

    Google Scholar 

  3. Cai CM, Zhang T, Kumar R, Wyman CE (2014) J Chem Technol Biotechnol 89:2–10

    Article  CAS  Google Scholar 

  4. Dutta S, De S, Saha B, Alam MI (2012) Catal Sci Technol 2:2025–2036

    Article  CAS  Google Scholar 

  5. Yan K, Wu G, Lafleur T, Jarvis C (2014) Renew Sustain Energy Rev 38:663–676

    Article  CAS  Google Scholar 

  6. Machado G, Leon S, Santos F, Lourega R, Dullius J, Mollmann ME, Eichler P (2016) Nat Resour 7:115–129

    CAS  Google Scholar 

  7. Sokoto AM, Muduru IK, Dangoggo SM, Anka NU, Hassan LG (2018) Energy Sources A 40:120–124

    Article  CAS  Google Scholar 

  8. Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) ChemSusChem 5:150–166

    Article  CAS  PubMed  Google Scholar 

  9. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  10. Li X, Jia P, Wang T (2016) ACS Catal 6:7621–7640

    Article  CAS  Google Scholar 

  11. Hronec M, Fulajtarová K (2012) Catal Commun 24:100–104

    Article  CAS  Google Scholar 

  12. Hronec M, Fulajtárová K, Vávra I, Soták T, Dobročka E, Mičušík M (2016) Appl Catal B 181:210–219

    Article  CAS  Google Scholar 

  13. Mironenko RM, Belskaya OB, Lavrenov AV, Likholobov VA (2017) Russ Chem Bull Int Ed 66:673–676

    Article  CAS  Google Scholar 

  14. Mironenko RM, Belskaya OB, Lavrenov AV, Likholobov VA (2018) Kinet Catal 59:339–346

    Article  CAS  Google Scholar 

  15. Li H, Zhao W, Saravanamurugan S, Dai W, He J, Meier S, Yang S, Riisager A (2018) Commun Chem 1:32

    Article  CAS  Google Scholar 

  16. Liu X, Zhang B, Fei B, Chen X, Zhang J, Mu X (2017) Faraday Discuss 202:79–98

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Chen Z, Wang X, Liang Y, Yang X, Wang Z (2017) ACS Sustain Chem Eng 5:744–751

    Article  CAS  Google Scholar 

  18. Liu F, Liu Q, Xu J, Li L, Cui Y-T, Lang R, Li L, Su Y, Miao S, Sun H, Qiao B, Wang A, Jérôme F, Zhang T (2018) Green Chem 20:1770–1776

    Article  CAS  Google Scholar 

  19. Zhou M, Zhu H, Niu L, Xiao G, Xiao R (2014) Catal Lett 144:235–241

    Article  CAS  Google Scholar 

  20. Li Y, Guo X, Liu D, Mu X, Chen X, Shi Y (2018) Catalysts 8:193

    Article  CAS  Google Scholar 

  21. Wang Y, Zhou M, Wang T, Xiao G (2015) Catal Lett 145:1557–1565

    Article  CAS  Google Scholar 

  22. Zhou M, Li J, Wang K, Xia H, Xu J, Jiang J (2017) Fuel 202:1–11

    Article  CAS  Google Scholar 

  23. Ma Y-F, Wang H, Xu G-Y, Liu X-H, Zhang Y, Fu Y (2017) Chin Chem Lett 28:1153–1158

    Article  CAS  Google Scholar 

  24. Ohyama J, Satsuma A (2017) In: Fang Z, Smith RL, Li H (eds) Production of biofuels and chemicals with bifunctional catalysts. Springer Nature, Singapore

    Google Scholar 

  25. Song S, Wu G, Guan N, Li L (2017) In: Fang Z, Smith RL, Li H (eds) Production of biofuels and chemicals with bifunctional catalysts. Springer Nature, Singapore

    Google Scholar 

  26. Mironenko RM, Belskaya OB, Gulyaeva TI, Trenikhin MV, Likholobov VA (2018) Catal Commun 114:46–50

    Article  CAS  Google Scholar 

  27. Mironenko RM, Belskaya OB, Gulyaeva TI, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA (2015) Catal Today 249:145–152

    Article  CAS  Google Scholar 

  28. Stepanova LN, Belskaya OB, Salanov AN, Serkova AN, Likholobov VA (2018) Appl Clay Sci 157:267–273

    Article  CAS  Google Scholar 

  29. Park J, Regalbuto JR (1995) J Colloid Interface Sci 175:239–252

    Article  CAS  Google Scholar 

  30. Zhang H-L, Morse DE (2012) J Mater Res 27:410–416

    Article  CAS  Google Scholar 

  31. Eschemann TO, Lamme WS, Manchester RL, Parmentier TE, Cognigni A, Rønning M, de Jong KP (2015) J Catal 328:130–138

    Article  CAS  Google Scholar 

  32. Voll M, Kleinschmit P (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  33. Mironenko RM, Belskaya OB, Talsi VP, Gulyaeva TI, Kazakov MO, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA (2014) Appl Catal 469:472–482

    Article  CAS  Google Scholar 

  34. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  35. Serp P, Machado B (2015) Nanostructured carbon materials for catalysis. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  36. Toebes ML, van Dillen JA, de Jong KP (2001) J Mol Catal A 173:75–98

    Article  CAS  Google Scholar 

  37. Frusteri F, Arena F, Parmaliana A, Mondello N, Giordano N (1993) React Kinet Catal Lett 51:331–342

    Article  CAS  Google Scholar 

  38. Lycourghiotis A (2009) In: de Jong KP (ed) Synthesis of solid catalysts. Wiley, Weinheim

    Google Scholar 

  39. Marceau E, Carrier X, Che M (2009) In: de Jong KP (ed) Synthesis of solid catalysts. Wiley, Weinheim

    Google Scholar 

  40. Ota A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Navarro Yerga RM, Behrens M (2012) J Catal 293:27–38

    Article  CAS  Google Scholar 

  41. Naresh D, Kumar VP, Harisekhar M, Nagaraju N, Putrakumar B, Chary KVR (2014) Appl Surf Sci 314:199–207

    Article  CAS  Google Scholar 

  42. Hronec M, Fulajtarová K, Liptaj T (2012) Appl Catal A 437–438:104–111

    Article  CAS  Google Scholar 

  43. Yang Y, Du Z, Huang Y, Lu F, Wang F, Gao J, Xu J (2013) Green Chem 15:1932–1940

    Article  CAS  Google Scholar 

  44. Ordomsky VV, Schouten JC, van der Schaaf J, Nijhuis TA (2013) Appl Catal A 451:6–13

    Article  CAS  Google Scholar 

  45. Piancatelli G, Scettri A, Barbadoro S (1976) Tetrahedron Lett 17:3555–3558

    Article  Google Scholar 

  46. Piutti C, Quartieri F (2013) Molecules 18:12290–12312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antunes MM, Lima S, Fernandes A, Ribeiro MF, Chadwick D, Hellgardt K, Pillinger M, Valente AA (2018) Appl Catal B 237:521–537

    Article  CAS  Google Scholar 

  48. Aelterman W, De Kimpe N, Kalinin V (1997) J Nat Prod 60:385–386

    Article  CAS  Google Scholar 

  49. Liu S, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) Catal Sci Technol 4:2535–2549

    Article  CAS  Google Scholar 

  50. Jackson MA, Blackburn JA, Price NPJ, Vermillion KE, Peterson SC, Ferrence GM (2016) Carbohydr Res 432:9–16

    Article  CAS  PubMed  Google Scholar 

  51. Horvat J, Klaić B, Metelko B, Šunjić V (1985) Tetrahedron Lett 26:2111–2114

    Article  CAS  Google Scholar 

  52. Kim T, Assary RS, Marshall CL, Gosztola DJ, Curtiss LA, Stair PC (2011) ChemCatChem 3:1451–1458

    Article  CAS  Google Scholar 

  53. Stakheev AYu, Kustov LM (1999) Appl Catal A 188:3–35

    Article  CAS  Google Scholar 

  54. van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis. Wiley, Weinheim

    Book  Google Scholar 

  55. Kizhakevariam N, Stuve EM (1992) Surf Sci 275:223–236

    Article  CAS  Google Scholar 

  56. Stakheev AY, Mashkovskii IS, Baeva GN, Telegina NA (2010) Russ J Gen Chem 80:618–629

    Article  CAS  Google Scholar 

  57. Ravenelle RM, Copeland JR, Kim W-G, Crittenden JC, Sievers C (2011) ACS Catal 1:552–561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Liudmila Stepanova and Olga Maevskaya for participation in the preparation of catalysts and in the potentiometric measurements, Dr. Rinat Izmailov for the analysis of the synthesized samples by ICP-AES, Sergey Evdokimov for his help with NMR measurements, and Dr. Alexey Arbuzov for providing the FTIR spectra of the supports. Besides, the authors are grateful to Dr. Vyacheslav Yurpalov for useful discussion of the catalytic results. Characterization of catalysts and identification of reaction products were performed using equipment of the Omsk Regional Center of Collective Usage, Siberian Branch of the Russian Academy of Sciences.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation in accordance with the Fundamental Research Program of State Academies of Sciences for 2013‒2020, Subject V.47, Project No. V.47.1.3 (state Registration Number in the EGISU NIOKTR System: AAAA-A17-117021450099-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman M. Mironenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironenko, R.M., Talsi, V.P., Gulyaeva, T.I. et al. Aqueous-phase hydrogenation of furfural over supported palladium catalysts: effect of the support on the reaction routes. Reac Kinet Mech Cat 126, 811–827 (2019). https://doi.org/10.1007/s11144-018-1505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1505-y

Keywords

Navigation