Skip to main content
Log in

Stability of titanium-supported layers of potassium titanates in soot oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The synthesis of catalyst K2Ti2O5 + K2Ti4O9/TiO2/TiO2 + SiO2/Ti for the oxidation of black carbon was carried out. The composition was prepared by the impregnation of an oxidized titanium surface with additionally modified sublayer consisted of anatase nanoparticles by potassium hydroxide. The initial and completion temperature of the catalytic soot afterburning process lays in the range of 340–550 °C and is in good agreement with analogous catalysts used in practice. The applied catalyst layer is resistant to adhesive and cohesive failure. It is characterized by a satisfactory resistance to thermal shock and the action of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Popova NM (1987) Vehicle exhaust catalysts. Nauka, Almaty (in Russian)

    Google Scholar 

  2. Krylov OV (2004) Heterogeneous catalysis. Akademkniga Publ, Moscow (in Russian)

    Google Scholar 

  3. van Setten BAAL, Makkee M, Moulijn JA (2001) Science and technology of catalytic diesel particulate filters. Catal Rev Sci Eng 43:489–564

    Article  Google Scholar 

  4. Krylova AV, Mikhailichenko AI (2003) Cerium-containing platinum and palladium catalysts. Khim Tekhnol 2:13–21 (in Russian)

    Google Scholar 

  5. Krishna K, Bueno-López A, Makkee M, Moulijn JA (2007) Potential rare earth modified CeO2 catalysts for soot oxidation part II: characterisation and catalytic activity with NO + O2. Appl Catal B Environ 75:201–209

    Article  CAS  Google Scholar 

  6. Guido S, SerraV Badini C, Specchia V (1997) Potential of mixed halides and vanadates as catalysts for soot combustion. Ind Eng Chem Res 36:2051–2058

    Article  Google Scholar 

  7. Sui L, Yu LY, Zhang YG (2006) The effects of alkaline earth metals on catalytic activities of K–Sm-based catalysts for diesel soot oxidation. Energy Fuels 20:1392–1397

    Article  CAS  Google Scholar 

  8. Liu S, Wu X, Weng D, Ran R (2015) Ceria-based catalysts for soot oxidation: a review. J Rare Earth 33:567–590

    Article  CAS  Google Scholar 

  9. Mukherjee D, Rao BG, Reddy BM (2016) CO and soot oxidation activity of doped ceria: influence of dopants. Appl Catal B Environ 197:105–115

    Article  CAS  Google Scholar 

  10. Anantharaman AP, Dasari HP, Dasari H, Babu GUB (2018) Surface morphology and phase stability effect of Ceria–Hafnia (CHx) binary metal oxides on soot oxidation activity. Appl Catal A Gen 566:181–189

    Article  CAS  Google Scholar 

  11. Mukherjee D, Reddy BM (2018) Noble metal-free CeO2-based mixed oxides for CO and soot oxidation. Catal Today 309:227–235

    Article  CAS  Google Scholar 

  12. Wang H, Jin B, Wang H, Ma N, Liu W, Weng D, Wu X, Liu S (2018) Study of Ag promoted Fe2O3@CeO2 as superior soot oxidation catalysts: the role of Fe2O3 crystal plane and tandem oxygen delivery. Appl Catal B Environ 237:251–262

    Article  CAS  Google Scholar 

  13. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, Fino D, Quadrelli EA, Pirone R (2017) Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B Environ 209:295–310

    Article  CAS  Google Scholar 

  14. Jin B, Wu X, Weng D, Liu S, Yu T, Zhao Z, Wei Y (2018) Roles of cobalt and cerium species in three-dimensionally ordered macroporous CoxCe1−xOδ catalysts for the catalytic oxidation of diesel soot. J Coll Interface Sci 532:579–587

    Article  CAS  Google Scholar 

  15. van Doorn J, Varloud J, Moriaudeau P, Perrichon V, Chevrie M, Gauthier C (1992) Effect of support material on the catalytic combustion of diesel soot particulates. Appl Catal B Environ 1:117–127

    Article  Google Scholar 

  16. Banus ED, Milt VG, Miro EE, Ulla MA (2010) Co, Ba, K/ZrO2 coated onto metallic foam (AISI 314) as a structured catalyst for soot combustion: coating preparation and characterization. Appl Catal A Gen 379:95–104

    Article  CAS  Google Scholar 

  17. Turakulova AO, Zaletova NV, Lunin VV (2010) The dependence of the oxygen-exchange properties of Ce0.5Zr0.5O2 on the method of synthesis. Russ J Phys Chem A 84:1309–1314

    Article  CAS  Google Scholar 

  18. Gao YX, Wu XD, Liu S, Weng D, Ran R (2016) Effect of water vapor on sulfur poisoning of MnOx–CeO2/Al2O3 catalyst for diesel soot oxidation. RSC Adv 6:S7033–S7040

    Google Scholar 

  19. Flouty R, Abi-Aad E, Siffert S, Aboukaïs A (2003) Role of molybdenum against ceria sulphur poisoning in the combustion of soot particles and the oxidation of propene. Appl Catal B Environ 46:145–153

    Article  CAS  Google Scholar 

  20. Gross MS, Ulla MA, Querini CA (2009) Catalytic oxidation of diesel soot: new characterization and kinetic evidence related to the reaction mechanism on K/CeO2 catalyst. Appl Catal A Gen 360:81–88

    Article  CAS  Google Scholar 

  21. Zhang ZL, Zhang YX, Wang ZP, Gao XY (2010) Catalytic performance and mechanism of potassium-supported Mg–Al hydrotalcite mixed oxides for soot combustion with O2. J Catal 271:12–21

    Article  CAS  Google Scholar 

  22. Gong CR, Song CL, Pei YQ, Lv G, Fan GL (2008) Synthesis of La0.9K0.1CoO3 fibers and the catalytic properties for diesel soot removal. Ind Eng Chem Res 47:4374–4378

    Article  CAS  Google Scholar 

  23. Peng XS, Lin H, ShangguanWF Huang Z (2006) Physicochemical and catalytic properties of La0.8K0.2CuxMn1−xO3 for simultaneous removal of NOx and soot: effect of Cu substitution amount and calcination temperature. Ind Eng Chem Res 45:8822–8828

    Article  CAS  Google Scholar 

  24. An HM, Kilroy C, McGinn PJ (2004) Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion. Catal Today 98:423–429

    Article  CAS  Google Scholar 

  25. Meng XH, Wang Q, Duan LH, Chung JS (2012) Catalytic combustion of diesel soot over perovskite-type catalyst: potassium titanates. Kinet Catal 53:560–564

    Article  CAS  Google Scholar 

  26. Wang Q, Chung JS, Guo ZH (2011) Promoted soot oxidation by doped K2Ti2O5 catalysts and NO oxidation catalysts. Ind Eng Chem Res 50:8384–8388

    Article  CAS  Google Scholar 

  27. Meng XH, Gao Y, Wang Q, Duan LH (2012) Selective oxidation of PM over Li doped potassium titanate catalysts. China Pet Process Petrochem Techol 14:50–54

    CAS  Google Scholar 

  28. Meille V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A Gen 315:1–17

    Article  CAS  Google Scholar 

  29. Ertl G, Knozinger H, Weitkamp J (eds) (1999) Preparation of Solid Catalysts. Wiley-VCH, Verlag (Federal Republic of Germany)

    Google Scholar 

  30. Gordienko PS, Rudnev VS, Gnedenkov SV, Yarovaya TP, Khrisanfova OA, Tyrin VI, Tyrina LM (1995) Catalytic structures prepared by electrochemical synthesis on metal surfaces. Russ J Appl Chem 68:854–857

    Google Scholar 

  31. Tikhov SF, Chernykh GV, Sadykov VA, Salanov AN, Alikina GM, Tsybulya SV, Lysov VF (1999) Honeycomb catalysts for clean-up of diesel exhausts based upon the anodic-spark oxidized aluminum foil. Catal Today 53:639–646

    Article  CAS  Google Scholar 

  32. Curran J, Clyne T (2006) Porosity in plasma electrolytic oxide coatings. Acta Mater 54:1985–1993

    Article  CAS  Google Scholar 

  33. Kondrikov NB, Rudnev VS, Vasilyeva MS, Tyrina LM, Yarovaya TP (2005) Prospects for the use in vehicles of oxide film catalysts formed by plasma electrolytic oxidation. Chem Sustain Dev 13:851–853 (in Russian)

    CAS  Google Scholar 

  34. Vasil’eva MS, Rudnev VS, Tyrina LM, Kondrikov NB, Budina AN (2005) Composition and catalytic activity of plasma-electrolytic manganese oxide films on titanium, modified with silver compounds. Russ J Appl Chem 78:1859–1863

    Article  Google Scholar 

  35. Vasil’eva MS, Rudnev VS, Kondrikov NB, Tyrina LM, Reshetar AA, Gordienko PS (2004) Catalytic activity of manganese-containing layers formed by anodic-spark deposition. Russ J Appl Chem 77:218–221

    Article  Google Scholar 

  36. Lukiyanchuk IV, Rudnev VS, Tyrina LM (2016) Plasma electrolytic oxide layers as promising systems for catalysis. Surf Coat Technol 307:1183–1193

    Article  CAS  Google Scholar 

  37. Karakurkchi A, Sakhnenko M, Ved M, Galak A, Petrukhin S (2017) Application of oxide-metallic catalysts on valve metals for ecological catalysis. East Eur J Enterp Technol 5:12–18

    Google Scholar 

  38. Lebukhova NV, Rudnev VS, Chigrin PG, Lukiyanchuk IV, Pugachevsky MA, Ustinov AYu, Kirichenko EA, Yarovaya TP (2013) The nanostructural catalytic composition CuMoO4/TiO2 + SiO2/Ti for combustion of diesel soot. Surf Coat Technol 231:144–148

    Article  CAS  Google Scholar 

  39. Lebukhova NV, Rudnev VS, Kirichenko EA, Chigrin PG, Lukiyanchuk IV, Karpovich NF, Pugachevsky MA, Kurjavyj VG (2015) The structural catalyst CuMoO4/TiO2/TiO2 + SiO2/Ti for diesel soot combustion. Surf Coat Technol 261:344–349

    Article  CAS  Google Scholar 

  40. Karpovich NF, Pugachevskij MA, Shtarev DS (2013) The influence of the solvent on the shape of the titanium dioxide crystals during the solvothermal autoclave synthesis. Appl Mech Mater 377:186–190

    Article  Google Scholar 

  41. Gorokhovsky AV (2008) Method for the preparation of potassium titanate. Patent RF 2326051 C1. Bull vol. 16

  42. Wang Q, Guo ZH, Chung JS (2009) Formation and structural characterization of potassium titanates and the potassium ion exchange property. Mater Res Bull 44:1973–1977

    Article  CAS  Google Scholar 

  43. Rudnev VS, Malyshev IV, Lukiyanchuk IV, Kuryavyi VG (2012) Composition, surface structure, and thermal behavior of ZrO2 + TiO2/Ti and ZrO2 + CeOx + TiO2 composites formed by plasma-electrolytic oxidation. Prot Met Phys Chem Surf 48:455–461

    Article  CAS  Google Scholar 

  44. Vasilyeva MS, Rudnev VS, Wiedenmann F, Wybornov S, Yarovaya TP, Jiang X (2011) Thermal behavior and catalytic activity in naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium. Appl Surf Sci 258:719–726

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by grants of RFBR No. 18-03-00418 and by the Program “Far East”, Project No. 18-3-034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Chigrin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chigrin, P.G., Kirichenko, E.A., Rudnev, V.S. et al. Stability of titanium-supported layers of potassium titanates in soot oxidation. Reac Kinet Mech Cat 125, 859–872 (2018). https://doi.org/10.1007/s11144-018-1474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1474-1

Keywords

Navigation