Skip to main content
Log in

Comparison of sulfonic acid loaded mesoporous silica in transesterification of triacetin

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Covalently linked sulfonic acid (–SO3H)-modified ordered mesoporous silicas MCM-48, MCM-41, and SBA-15 were synthesized, characterized and their catalytic activities were evaluated in the transesterification reaction of triacetin with methanol. Acid modified materials were prepared by oxidative transformation of immobilized functionalized unit, 3-mercaptopropyltriethoxysilane (MPTES) as a precursor. The mesophase and porosity of the catalysts were determined by means of X-ray diffraction and N2 adsorption techniques. No degradation of structure was observed in the preparation process. The acid concentrations were calculated using TG–DTA and NH3–TPD analysis. The acid modified materials were found to be active catalysts for the transesterification of triacetin with methanol. Especially, three-dimensional-MCM-48-SO3H showed better catalytic activity compared to its two-dimensional counterparts MCM-41 and SBA-15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  2. Stein A, Melde BJ, Schrodein RC (2000) Adv Mater 12:1403–1419

    Article  CAS  Google Scholar 

  3. Van Rhijn WM, De Vos DE, Bossaert WD, Jacobs PA (1998) Chem Commun 3:317–318

    Article  Google Scholar 

  4. Ide Y, Iwata M, Yagenji Y, Tsunoji N, Sohmiya M, Komaguchi K, Sano T, Sugahara Y (2016) J Mater Chem A 4:15829–15835

    Article  CAS  Google Scholar 

  5. Ziarani GM, Badiei A, Mousavi S, Lashgari N, Shahbazi A (2012) Chin J Catal 33:1832–1839

    Article  Google Scholar 

  6. Tsai CT, Pan YC, Ting CC, Vetrivel S, Chiang AST, Fey GTK, Kao HM (2009) Chem Commun 33:5018–5020

    Article  Google Scholar 

  7. Mondal J, Nandi M, Modak A, Bhaumik A (2012) J Mol Catal A 254:363–364

    Google Scholar 

  8. Wu B, Tong Z, Yuan X (2012) J Porous Mater 19:641–647

    Article  CAS  Google Scholar 

  9. Canilho N, Jacoby J, Pasc A, Carteret C, Dupire F, Stébé MJ, Blin JL (2013) Colloids Surf B 112:139–145

    Article  CAS  Google Scholar 

  10. Shieh FK, Hsiao CT, Wu JW, Sue YC, Bao YL, Liu YH, Wan L, Hsu MH, Deka JR, Kao HM (2013) J Hazard Mater 260:1083–1091

    Article  CAS  Google Scholar 

  11. Harmer MA, Sun Q (2001) Appl Catal A 221:45–62

    Article  CAS  Google Scholar 

  12. Timofeeva MN, Panchenko VN, Hasan Z, Khan NA, Mel’gunov MS, Abel AA, Matrosova M, Volchod KP, Jhung SH (2014) Appl Catal A 469:427–433

    Article  CAS  Google Scholar 

  13. Khan NA, Mishra DK, Ahmed I, Yoon JW, Hwang JS, Jhung SH (2013) Appl Catal A 452:34–38

    Article  CAS  Google Scholar 

  14. Timofeeva MN (2003) Appl Catal A 256:19–35

    Article  CAS  Google Scholar 

  15. Goestena MG, Juan-Alcañiz J, Ramos-Fernandez EV, Gupta KBSS, Stavitski E, Bekkum HV, Gascon J, Kapteijn F (2011) J Catal 281:177–187

    Article  Google Scholar 

  16. Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S (2011) Adv Mater 23:3294–3297

    Article  CAS  Google Scholar 

  17. Hasan Z, Jhung SH (2014) Eur J Inorg Chem 21:3420–3426

    Article  Google Scholar 

  18. Kureshy RI, Ahmad I, Pathak K, Khan NH, Abdi SHR, Jasra RV (2009) Catal Commun 10:572–575

    Article  CAS  Google Scholar 

  19. Zhang G, Zhang X, Lv J, Liu H, Qiu J, Yeung KL (2012) Catal Today 193:221–225

    Article  CAS  Google Scholar 

  20. Meziani MJ, Zajac J, Jones DJ, Patyka S, Roziere J, Auroux A (2000) Langmuir 16:2262–2268

    Article  CAS  Google Scholar 

  21. Brunel D, Blanc AC, Galarneau A, Fajula F (2002) Catal Today 73:139–152

    Article  CAS  Google Scholar 

  22. Dias AS, Pillinger M, Valente AA (2005) J Catal 229:414–423

    Article  CAS  Google Scholar 

  23. Malero JA, Stucky GD, Grieken R, Morales G (2002) J Mater Chem 12:1664–1670

    Article  Google Scholar 

  24. Bandyopadhyay M, Shiju NR, Brown DR (2010) Catal Commun 11:660–664

    Article  CAS  Google Scholar 

  25. Diaz I, Mohino F, Perez-Pariente J, Sastre E, Wright P, Zhou W (2001) Stud Surf Sci Catal 135:1248–1253

    CAS  Google Scholar 

  26. Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448–2459

    Article  CAS  Google Scholar 

  27. Bossaert WD, De Vos DE, Van Rhijn WM, Bullen J, Grobet PJ, Jacobs PA (1999) J Catal 182:156–164

    Article  CAS  Google Scholar 

  28. Bender M (1999) Bioresour Technol 70:81–87

    Article  CAS  Google Scholar 

  29. Diasakou M, Louloudi A, Papayannakos N (1998) Fuel 77:1297–1302

    Article  CAS  Google Scholar 

  30. Ogoshi T, Miyawaki Y (1985) J Am Oil Chem Soc 62:331–335

    Article  CAS  Google Scholar 

  31. Suppes GJ, Bockwinkel K, Lucas S, Botts JB, Mason MH, Heppert JA (2001) J Am Oil Chem Soc 78:139–145

    Article  CAS  Google Scholar 

  32. Kildiran G, Yucel SO, Turkay S (1996) J Am Oil Chem Soc 73:225–232

    Article  CAS  Google Scholar 

  33. Nam LTH, Vinh TQ, Loan NTT, Van Tho DS, Yang X, Su B (2011) Fuel 90:1069–1075

    Article  CAS  Google Scholar 

  34. Hara M (2009) Chem Sus Chem 2:109–135

    Article  Google Scholar 

  35. Sharma YC, Singh B (2010) Biofuels, Bioprod Biorefin 5:69–92

    Article  Google Scholar 

  36. Serio MD, Tesser R, Pengmei L, Santacesaria E (2008) Energy Fuels 22:207–217

    Article  Google Scholar 

  37. Diaz I, Mohino F, Perez-Pariente J, Sastre E (2003) Appl Catal A 242:161–169

    Article  CAS  Google Scholar 

  38. Alvaro M, Corma A, Das D, Fornes V, Garcia H (2005) J Catal 231:48–55

    Article  CAS  Google Scholar 

  39. Mbaraka IK, Radu DR (2003) Y Lin VS, Shanks BH. J Catal 219:329–336

    Article  CAS  Google Scholar 

  40. Sayari A, Hamoudi S (2001) Chem Mater 13:3151

    Article  CAS  Google Scholar 

  41. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887–7916

    Article  CAS  Google Scholar 

  42. Shagufta Ahmad I, Dhar R (2017) Catal. Surv. Asia 21:53–69

    Article  CAS  Google Scholar 

  43. Bandyopadhyay M, Tsunoji N, Sano T (2017) Catal Lett 147:1040–1050

    Article  CAS  Google Scholar 

  44. Gies H, Grabowski S, Bandyopadhyay M, Grunert W, Tkachenko OP, Klementiev KV, Birkner A (2003) Micropor Mesopor Mater 60:31–42

    Article  CAS  Google Scholar 

  45. Lesaint C, Lebeau B, Marichal C, Patarin J (2005) Micropor Mesopor Mater 83:76–84

    Article  CAS  Google Scholar 

  46. Wang X, Tseng YH, Chan JCC (2007) J Phy Chem C 111:2156–2164

    Article  CAS  Google Scholar 

  47. Siril PF, Davison AD, Randhawa JK, Brown DR (2007) J Mol Catal A 267:72–78

    Article  CAS  Google Scholar 

  48. Yoshitake H, Yokoi T, Tatsumi T (2002) Chem Mater 14:4603–4610

    Article  CAS  Google Scholar 

  49. Li Y, Zhou G, Li C, Qin D, Qiao W, Chu B (2009) Colloids Surf A 341:79–85

    Article  CAS  Google Scholar 

  50. Fredman B, Pryde EH, Mounts TL (1984) J Am Oil Chem Soc 61:1638–1643

    Article  Google Scholar 

  51. Silveira JQ, Vargas MD, Ronconi CM (2011) J Mater Chem 21:6034–6039

    Article  CAS  Google Scholar 

  52. Molnar A (2011) Chem Rev 111:2251–2320

    Article  CAS  Google Scholar 

  53. Molnar A, Papp A (2017) Coord Chem Rev 349:1–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahuya Bandyopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, M., Tsunoji, N., Bandyopadhyay, R. et al. Comparison of sulfonic acid loaded mesoporous silica in transesterification of triacetin. Reac Kinet Mech Cat 126, 167–179 (2019). https://doi.org/10.1007/s11144-018-1447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1447-4

Keywords

Navigation