Reaction Kinetics, Mechanisms and Catalysis

, Volume 125, Issue 2, pp 647–661 | Cite as

Performance regulation of Mn/TiO2 catalysts by surfactants for the selective catalytic reduction of NO with NH3 at low temperatures

  • Fengxiang Li
  • Junlin Xie
  • Haifeng Cui
  • Pijun Gong
  • Feng He


A series of Mn/TiO2 catalysts were prepared using different dosage of cetyl trimethyl ammonium bromide (CTAB) and polyethylene glycol (PEG) 600 as surfactants by sol–gel method. When CTAB/Ti and PEG/Ti were 0.075 and 0.13, the morphology of the catalysts exhibited nano rod and regular sphere structure, respectively, and the activity was also the highest. The superior SCR activity of NC(0.075)-Mn/TiO2 and NP(0.13)-Mn/TiO2 catalysts was mainly due to the larger surface area and stronger reduction ability. In addition, it was found that the SCR activity of the catalysts with PEG600 as surfactants was generally higher than that of CTAB as surfactants, which may be due to its advantages in specific surface area, crystallinity, acidity, surface ion and chemisorbed oxygen concentration, and reducibility.


NH3-SCR MnOx/TiO2 catalysts Performance regulation Surfactants 



This work was financially supported by “the Fundamental Research Funds for the Central Universities” (2017-YB-012). And the tests of XRD, SEM and XPS were supported by Research and Test Center of Materials, Wuhan University of Technology. TG, H2-TPR and NH3-TPD tests were supported by State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology.

Supplementary material

11144_2018_1433_MOESM1_ESM.doc (3.6 mb)
Supplementary material 1 (DOC 3721 kb)


  1. 1.
    Panahi PN (2017) Reac Kinet Mech Cat 121:773–783CrossRefGoogle Scholar
  2. 2.
    Dong WK, Park KH, Hong SC (2015) Appl Catal A 499:1–12CrossRefGoogle Scholar
  3. 3.
    Liu X, Wu X, Xu T, Weng D, Si Z, Ran R (2016) Chinese J Catal 37(8):1340–1346CrossRefGoogle Scholar
  4. 4.
    Jiang B, Deng B, Zhang Z, Wu Z, Tang X, Yao S (2012) J Phys Chem C 118(27):14866–14875CrossRefGoogle Scholar
  5. 5.
    Mu W, Zhu J, Zhang S, Guo Y, Su L, Li X (2016) Catal Sci Technol 6:7532–7548CrossRefGoogle Scholar
  6. 6.
    Yao X, Ma K, Zou W, He S, An J, Yang F (2017) Chinese J Catal 38:146–159CrossRefGoogle Scholar
  7. 7.
    Dong G, Li Y, Wang Y, Zhang J, Duan R (2014) Reac Kinet Mech Cat 111(1):235–245CrossRefGoogle Scholar
  8. 8.
    Łamacz A, Krztoń A, Djéga-Mariadassou G (2013) Appl Catal B 142–143:268–277CrossRefGoogle Scholar
  9. 9.
    Wang Y, Li C, Zhao L, Xie Y, Zhang X, Zeng G (2016) Environ Sci Pollut R 23(6):5099–5110CrossRefGoogle Scholar
  10. 10.
    Thirupathi B, Smirniotis PG (2011) Appl Catal B 110(41):195–206CrossRefGoogle Scholar
  11. 11.
    Chen Z, Yang Q, Li H, Li X, Wang L, Tsang SC (2010) J Catal 276(1):56–65CrossRefGoogle Scholar
  12. 12.
    Thirupathi B, Smirniotis PG (2012) J Catal 288(4):74–83CrossRefGoogle Scholar
  13. 13.
    Shi Y, Chen S, Sun H, Shu Y, Quan X (2013) Catal Commun 42(23):10–13CrossRefGoogle Scholar
  14. 14.
    Liu Z, Yi Y, Zhang S, Zhu T, Zhu J, Wang J (2013) Catal Today 216:76–81CrossRefGoogle Scholar
  15. 15.
    Yang RT, Qi G (2003) Appl Catal B 44(3):217–225CrossRefGoogle Scholar
  16. 16.
    Li F, Xie J, Fang D, He F, Qi K, Gong PJ (2017) Res Chem Intermed 43:5413–5432CrossRefGoogle Scholar
  17. 17.
    Stobbe ER, Boer D, Geus JW (1999) Catal Today 47(1–4):161–167CrossRefGoogle Scholar
  18. 18.
    Richter M, Trunschke A, Bentrup U, Brzezinka KW, Schreier E, Schneider M (2002) J Catal 206(1):98–113CrossRefGoogle Scholar
  19. 19.
    Trawczyński J, Bielak B, Miśta W (2005) Appl Catal B 55(4):277–285CrossRefGoogle Scholar
  20. 20.
    Xie J, Li F, Hu H, Qi K, He F, Fang D (2017) Mater Res Express 4(5):055503CrossRefGoogle Scholar
  21. 21.
    Putluru SSR, Schill L, Jensen AD, Siret B, Tabaries F, Fehrmann R (2015) Appl Catal B 165:628–635CrossRefGoogle Scholar
  22. 22.
    Zhang P, Hou Q (2016) Reac Kinet Mech Cat 117(1):119–128CrossRefGoogle Scholar
  23. 23.
    Fang D, He F, Liu X, Qi K, Xie J, Li F (2017) Appl Surf Sci 427:45–55CrossRefGoogle Scholar
  24. 24.
    Chen Z, Wang F, Li H, Yang Q, Wang L, Li X (2012) Ind Eng Chem Res 51(1):202–212CrossRefGoogle Scholar
  25. 25.
    Reddy AS, Gopinath CS, Chilukuri S (2006) J Catal 243(2):278–291CrossRefGoogle Scholar
  26. 26.
    Zhang L, Zhang D, Zhang J, Cai S, Fang C, Huang L (2013) Nanoscale 5(20):9821–9829CrossRefGoogle Scholar
  27. 27.
    Wang L, Huang B, Su Y, Zhou G, Wang K, Luo H (2012) Chem Eng J 192(2):232–241CrossRefGoogle Scholar
  28. 28.
    Fang D, Xie J, Mei D, Zhang Y, He F, Liu X (2014) Rsc Adv 4(49):25540–25551CrossRefGoogle Scholar
  29. 29.
    Xie J, Fang D, He F, Chen J, Fu Z, Chen X (2012) Catal Commun 28(44):77–81CrossRefGoogle Scholar
  30. 30.
    Stanciulescu M, Caravaggio G, Dobri A, Moir J, Burich R, Charl JP (2012) Appl Catal B 123(12):229–240CrossRefGoogle Scholar
  31. 31.
    Xiong Y, Tang C, Yao X, Zhang L, Li L, Wang X (2015) Appl Catal A 495(1):206–216CrossRefGoogle Scholar
  32. 32.
    Ettireddy PR, Ettireddy N, Boningari T, Pardemann R, Smirniotis PG (2012) J Catal 292(4):53–63CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Fengxiang Li
    • 1
    • 3
  • Junlin Xie
    • 1
    • 2
  • Haifeng Cui
    • 1
    • 3
  • Pijun Gong
    • 1
    • 3
  • Feng He
    • 1
    • 3
  1. 1.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Research and Test Center of MaterialsWuhan University of TechnologyWuhanPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations