Skip to main content
Log in

Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Fe3O4 was prepared by an alternative method using the dropwise addition of FeCl3 and FeSO4 precursor solutions into a NaOH solution, as proved by XRD, TEM and magnetic measurements. The Fe3O4 material was confirmed to be well-crystallized magnetite with an average size of about 21.5 nm and stronger superparamagnetic with a saturation magnetization of 57.04 emu/g and it was found to be an effective catalyst for liquid-phase oxidation of styrene to benzaldehyde (BzH) with H2O2 as oxidant, getting ca. 100% selectivity to BzH with 40.4% conversion of styrene. This catalyst can be easily recovered by a simple magnetic separation and effectively reused. However, the reaction mechanism was confirmed by in situ DRIFTS spectra analysis and according to literature reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

References

  1. Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Aerobic oxidation of styrenes catalyzed by an iron metal organic framework. ACS Catal 1:836–840

    Article  CAS  Google Scholar 

  2. Nemanashi M, Meijboom R (2013) Dendrimer derived titania-supported Au nanoparticles as potential catalysts in styrene oxidation. Catal Lett 143:324–332

    Article  CAS  Google Scholar 

  3. Das BK, Clark JH (2000) A novel immobilised cobalt(III) oxidation catalyst. Chem Commun 605–606

  4. Adam F, Iqbal A (2010) The oxidation of styrene by chromium-silica heterogeneous catalyst prepared from rice husk. Chem Eng J 160:742–750

    Article  CAS  Google Scholar 

  5. Liu C, Huang J, Sun D, Zhou Y, Jing X, Du M, Wang H, Li Q (2013) Anatase type extra-framework titanium in TS-1: a vital factor influencing the catalytic activity toward styrene epoxidation. Appl Catal A 459:1–7

    Article  CAS  Google Scholar 

  6. Wang J, Lu J, Yang J, Chen R, Zhang Y, Yin D, Wang J (2013) Ti containing mesoporous silica submicrometer-sphere, with tunable particle size for styrene oxidation. Appl Surf Sci 283:794–801

    Article  CAS  Google Scholar 

  7. Tong J, Li W, Bo L, Wang H, Hu Y, Zhang Z, Mahboob A (2016) Selective oxidation of styrene catalyzed by cerium-doped cobalt ferrite nanocrystals with greatly enhanced catalytic performance. J Catal 344:474–481

    Article  CAS  Google Scholar 

  8. Ghosh S, Acharyya SS, Kumar M, Bal R (2015) One-pot preparation of nanocrystalline Ag-WO3 catalyst for the selective oxidation of styrene. RSC Adv 5:37610–37616

    Article  CAS  Google Scholar 

  9. Wang H, Qian W, Chen J, Wu Y, Xu X, Wang J, Kong Y (2014) Spherical V-MCM-48: the synthesis, characterization and catalytic performance in styrene oxidation. RSC Adv 4:50832–50839

    Article  CAS  Google Scholar 

  10. Chen D, Li N, Sun P, Kong Y (2009) Catalytic performance of Ti-MCM-41 for styrene oxidation. Chin J Catal 30:643–648

    CAS  Google Scholar 

  11. Zhang Y, Shen J, Zhu J, Sun Y (2012) Study on preparation process of benzaldehyde by catalytic oxidation of styrene on catalyst V-SBA-15. Petrochem Tech Appl 30:124–128

    Google Scholar 

  12. Adam F, Iqbal A (2011) The liquid phase oxidation of styrene with tungsten modified silica as a catalyst. Chem Eng J 171:1379–1386

    Article  CAS  Google Scholar 

  13. Zhang L, Hua Z, Dong X, Li L, Chen R, Shi J (2007) Preparation of highly ordered Fe-SBA-15 by physical-vapor-infiltration and their application to liquid phase selective oxidation of styrene. J Mol Catal A 268:155–162

    Article  CAS  Google Scholar 

  14. Sun W, Hu J (2016) Oxidation of styrene to benzaldehyde with hydrogen peroxide in the presence of catalysts obtained bby the immobilization of H3PW12O40 on SBA-15 mesoporous material. Reac Kinet Mech Cat 119:305–318

    Article  CAS  Google Scholar 

  15. Shi F, Tse M-K, Pohl M, Brükner A, Zhang S, Beller M (2007) Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew Chem Int Ed 46:8866–8868

    Article  CAS  Google Scholar 

  16. Shi F, Tse M-K, Pohl M, Radnik J, Brükner A, Zhang S, Beller M (2008) Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide. J Mol Catal A 292:28–35

    Article  CAS  Google Scholar 

  17. González-Arellano C, Campelo JM, Macquarrie DJ, Marinas JM, Romero AA, Luque R (2008) Efficient microwave oxidation of alcohols using low-loaded supported metallic iron nanoparticles. ChemSusChem 1:746–750

    Article  Google Scholar 

  18. Rajabi F, Karimi N, Saidi MR, Primo A, Varma RS, Luque R (2012) Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium. Adv Synth Catal 354:1707–1711

    Article  CAS  Google Scholar 

  19. Rak MJ, Lerro M, Moores A (2014) Hollow iron oxide nanoshells are active and selective catalysts for the partial oxidation of styrene with molecular oxygen. Chem Commun 50:12482–12485

    Article  CAS  Google Scholar 

  20. Laurent S, Orge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  21. Jolivet JP, Chaneac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–487

    Google Scholar 

  22. Zhang W, Lu B, Tang H, Zhao J, Cai Q (2015) Reclamation of acid pickling waste: a facile route for preparation of single-phase Fe3O4 nanoparticle. J Magn Magn Mater 381:401–404

    Article  CAS  Google Scholar 

  23. Tasca J, Lavat A, Nesprias K, Barreto G, Alvarez E, Eyler N, Canizo A (2012) Cyclic organic peroxides thermal decomposition in the presence of CuFe2O4 magnetic nanoparticles. J Mol Catal A 363–364:166–170

    Article  Google Scholar 

  24. Xing M, Xu W, Dong C, Bai Y, Zeng Y, Zhou Y, Zhang J, Yin Y (2018) Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4:1–14

    Article  Google Scholar 

  25. Brückner A (2000) A new approach to study the gas-phase oxidation of toluene: probing active sites in vanadia-based catalysts under working conditions. Appl Catal A 200:287–297

    Article  Google Scholar 

  26. Kumar S, Sinha AK, Hegde SG, Sivasanker S (2000) Influence of mild dealumination on physicochemical, acidic and catalytic properties of H-ZSM-5. J Mol Catal A 154:115–120

    Article  CAS  Google Scholar 

  27. Fan S, Pan Y, Wang H, Lu B, Zhao J, Cai Q (2017) Effect of acidic and red-ox sites over modified ZSM-5 surface on selectivity in oxidation of toluene. Mol Catal 442:20–26

    Article  CAS  Google Scholar 

  28. Walker KL, Dornan LM, Zare RN, Waymouth RM, Muldoon MJ (2017) Mechanism of catalytic oxidation of styrenes with hydrogen peroxide in the presence of cationic palladium(II) complexes. J Am Chem Soc 139:12495–12503

    Article  CAS  Google Scholar 

  29. Adam W, Corma A, Martinez A, Renz M (1996) The mechanism of the double bond cleavage in the titanium zeolite-catalyzed oxidation of alpha-methylstyrene by hydrogen peroxide: the & β-hydroperoxy alcohol as intermediate. Chem Ber 129:1453–1455

    Article  CAS  Google Scholar 

  30. Wróblewska A, Makuch E, Młodzik J, Koren Z, Michalkiewicz B (2017) Fe/nanoporous carbon catalysts obtained from molasses for the limonene oxidation process. Catal Lett 147:150–160

    Article  Google Scholar 

Download references

Acknowledgements

We make a great acknowledgment for the financial support of this work by the National Natural Science Foundation of China (No. 21671050), Discipline Leader Foundation of Harbin (No. 2013RFXXJ009) and the Natural Science Foundation of Heilongjiang Province (No. B201119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Wang, H., Lu, B. et al. Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant. Reac Kinet Mech Cat 125, 743–756 (2018). https://doi.org/10.1007/s11144-018-1429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1429-6

Keywords

Navigation