Reaction Kinetics, Mechanisms and Catalysis

, Volume 125, Issue 1, pp 127–139 | Cite as

(Ni/MgAl2O4)@SiO2 core–shell catalyst with high coke-resistance for the dry reforming of methane

  • Yousen Wang
  • Qiong Fang
  • Weihua Shen
  • Zhiqing Zhu
  • Yunjin Fang


A novel core–shell catalyst as [(Ni/MgAl2O4)@SiO2] was successfully prepared by three steps. First, the support was prepared, then 10 wt% Ni was loaded upon the support by the wetness incepting impregnation method; finally, the catalyst was coated with mesoporous silica. Two supports with different sizes were synthesized by homogeneous precipitation method and solution combustion method, respectively. Based on different supports, two series of catalysts with the characteristics of same components and different particle diameters were obtained. All catalysts were characterized by X-ray diffraction, transmission electron microscopy, N2-physisorption and thermal gravimetric analyzer to measure the crystallinity, morphology, surface structure and carbon deposition. The results shown that core–shell catalysts [(Ni/MgAl2O4)@SiO2] had better coke-resistance and stability than the uncoated catalysts (Ni/MgAl2O4). Therefore, core–shell catalyst coated by silica exhibited better performance in dry reforming of methane.


Dry reforming Methane Coke-resistance Core–shell Nickel 



This work is supported by the National Natural Science Foundation of China (Project No. 21576083), sponsored by Shanghai Pujiang Program (No. 14PJ1402400), and supported by the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(No. SKL201510SIC).

Supplementary material

11144_2018_1404_MOESM1_ESM.docx (374 kb)
Supplementary material 1 (DOCX 374 kb)


  1. 1.
    Arora S, Prasad R (2016) RSC Adv 6:108668–108688CrossRefGoogle Scholar
  2. 2.
    Yang KZ, Twaiq F (2017) Reac Kinet Mech Cat 122:853–868CrossRefGoogle Scholar
  3. 3.
    Praserthdam S, Balbuena PB (2017) Reac Kinet Mech Cat 122:53–68CrossRefGoogle Scholar
  4. 4.
    Djinović P, Črniveci GO, Batista J, Levec J, Pintar A (2011) Chem Eng Process 50:1054–1062CrossRefGoogle Scholar
  5. 5.
    Kehres J, Jakobsen JG, Andreasen JW, Wagner JB, Liu H, Molenbroek A, Sehested J, Chorkendorff I, Vegge T (2012) J Phys Chem C 116:21407–21415CrossRefGoogle Scholar
  6. 6.
    Nagaoka K, Seshan K, Aika K, Lercher JA (2001) J Catal 197:34–42CrossRefGoogle Scholar
  7. 7.
    Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF (2006) J Nat Gas Chem 15:327–334CrossRefGoogle Scholar
  8. 8.
    Bradford MCJ, Vannice MA (1999) Catal Rev 41:11–42CrossRefGoogle Scholar
  9. 9.
    Tokunaga O, Ogasawara S (1989) React Kinet Catal Lett 1:69–74CrossRefGoogle Scholar
  10. 10.
    Shen W, Momoi H, Komatsubara K, Saito T, Yoshida A, Naito S (2011) Catal Today 171:150–155CrossRefGoogle Scholar
  11. 11.
    Sun N, Wen X, Wang F, Wei W, Sun Y (2010) Energy Environ Sci 3:366–369CrossRefGoogle Scholar
  12. 12.
    Tomishige K, Chen Y, Fujimoto K (1999) J Catal 181:91–103CrossRefGoogle Scholar
  13. 13.
    Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) J Catal 194:424–430CrossRefGoogle Scholar
  14. 14.
    Zhang J, Wang H, Dalai AK (2008) Appl Catal A 339:121–129CrossRefGoogle Scholar
  15. 15.
    De Jesus AS, Maloncy ML, Batista MS (2017) Reac Kinet Mech Cat 122:501–511CrossRefGoogle Scholar
  16. 16.
    Song SH, Park JE, Chang TS, Suh JK (2013) Reac Kinet Mech Cat 108:161–171CrossRefGoogle Scholar
  17. 17.
    Xu L, Song H, Chou L (2011) Catal Sci Technol 1:1032–1042CrossRefGoogle Scholar
  18. 18.
    Drobná H, Kout M, Sołtysek A, González-Delacruz VM, Caballero A, Čapek L (2017) Reac Kinet Mech Cat 121:255–274CrossRefGoogle Scholar
  19. 19.
    Li Z, Li M, Bian Z, Kathiraser Y, Kawi S (2016) Appl Catal B 188:324–341CrossRefGoogle Scholar
  20. 20.
    Wang F, Xu L, Shi W (2016) J CO2 Util 16:318–327CrossRefGoogle Scholar
  21. 21.
    Yang W, Liu H, Li Y, Zhang J, Wu H, He D (2016) Catal Today 259:438–445CrossRefGoogle Scholar
  22. 22.
    Zhang J, Li F (2015) Appl Catal B 176–177:513–521CrossRefGoogle Scholar
  23. 23.
    Zhao X, Li H, Zhang J, Shi L, Zhang D (2016) Int J Hydrog Energy 41:2447–2456CrossRefGoogle Scholar
  24. 24.
    Li Z, Mo L, Kathiraser Y, Kawi S (2014) ACS Catal 4:1526–1536CrossRefGoogle Scholar
  25. 25.
    Guo JJ, Lou H, Zhao H, Chai DF, Zheng XM (2004) Appl Catal A 273:75–82CrossRefGoogle Scholar
  26. 26.
    Hokazono S, Manako K, Kato A (1992) Br Ceram Trans J 92:77–79Google Scholar
  27. 27.
    Ianoş R, Lazău I, Păcurariu C, Barvinschi P (2008) Mater Res Bull 43:3408–3415CrossRefGoogle Scholar
  28. 28.
    Özdemir H, Öksüzömer MAF, Gürkaynak MA (2014) Fuel 116:63–70CrossRefGoogle Scholar
  29. 29.
    Burton AW, Ong K, Rea T, Chan IY (2009) Microporous Mesoporous Mater 117:75–90CrossRefGoogle Scholar
  30. 30.
    Kawi S, Kathiraser Y, Ni J, Oemar U, Li Z, Saw ET (2015) ChemSusChem 8:3556–3575CrossRefGoogle Scholar
  31. 31.
    Du X, Zhang D, Gao R, Huang L, Shi L, Zhang J (2013) Chem Commun 49:6770–6772CrossRefGoogle Scholar
  32. 32.
    Han JW, Park JS, Choi MS, Lee H (2017) Appl Catal B 203:625–632CrossRefGoogle Scholar
  33. 33.
    Gao X, Liu G, Wei Q, Yang G, Masaki M, Peng X, Yang R, Tsubaki N (2017) Int J Hydrog Energy 42:16547–16556CrossRefGoogle Scholar
  34. 34.
    Lovell EC, Scott J, Amal R (2015) Molecules 20:4594–4609CrossRefGoogle Scholar
  35. 35.
    Lovell E, Jiang Y, Scott J, Wang F, Suhardja Y, Chen M, Huang J (2014) Appl Catal A 473:51–58CrossRefGoogle Scholar
  36. 36.
    Bore MT, Pham HN, Switzer EE, Ward TL, Datye AK, Fukuoka A (2005) J Phys Chem B 109:2873–2880CrossRefGoogle Scholar
  37. 37.
    Juan-Juan J, Román-Martínez MC, Illán-Gómez MJ (2009) Appl Catal A 355:27–32CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations