Reaction Kinetics, Mechanisms and Catalysis

, Volume 125, Issue 1, pp 85–97 | Cite as

Nitrous oxide decomposition over La0.3Sr0.7Co0.7Fe0.3O3−δ catalyst

  • U. W. Hartley
  • V. Tongnan
  • N. Laosiripojana
  • P. Kim-Lohsoontorn
  • K. Li


Nano-sized La0.3Sr0.7Co0.7Fe0.3O3-δ (LSFC3773) was prepared as a catalyst for nitrous oxide (N2O) decomposition by a sonochemical method. The catalyst provided a complete conversion of N2O at 450 °C, showing the best performance among most recent industrial catalysts, and offered 99.7–100% conversion at higher temperatures, e.g., 540–600 °C. A suitable operating temperature range for the reaction to avoid NOx formation is from 400 to 600 °C. The activation energy and the pre-exponential factor were 42.96 kJ/mol and 161,135.35 mol/gcat h bar. Oxygen inhibition was observed and was more obvious as the sample approached full surface coverage (\(\theta \; = \;1\)) at 375 °C using a 100% N2O feed. The reaction occurred via the Eley–Rideal mechanism. Two possible model mechanisms were suggested according to the experimental phenomenon and the rate coefficient order of each elementary steps.


Nitrous oxide decomposition LSCF Sonochemical synthesis Eley–Rideal Nanoparticles 



We would like to acknowledge the support from grants from the Thailand Research Fund (TRG5880059) and King Mongkut’s University of Technology North Bangkok (KMUTNB-GOV-59-43 and KMUTNB-NRU-58-14).


  1. 1.
    Li T, Rabuni MF, Kleiminger L, Wang B, Kelsall GH, Hartley UW, Li K (2016) Energy Environ Sci 9:3682–3686CrossRefGoogle Scholar
  2. 2.
    Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics from air pollution to climate change. Wiley, New YorkGoogle Scholar
  3. 3.
    Anderson B, Bartlett K, Frolking S, Hayhoe K, Jenkins J, Salas W (2010) Methane and nitrous emissions from natural sources, EPA 430-R-10-001. EPA, Washington DCGoogle Scholar
  4. 4.
    Breidenich C, Magraw D, Rowley A, Rubin JW (1998) Am J Int Law 92:315–331CrossRefGoogle Scholar
  5. 5.
    Eurostat Statistics Explained (2017) Greenhouse gas emission statistics—emission inventories. Accessed 30 Mar 2017
  6. 6.
    Perez-Ramirez J, Kapteijn F, Schoffel K, Moulijn JA (2003) Appl Catal B 44:117–151CrossRefGoogle Scholar
  7. 7.
    Shimizu A, Tanaka K, Fujimori M (2000) Chemosphere-Global Change Sci 2:425CrossRefGoogle Scholar
  8. 8.
    Centi G, Generali P, Dall’Olio L, Perathoner S, Rak Z (2000) Ind Eng Chem Res 39:131CrossRefGoogle Scholar
  9. 9.
    Wojtowicz MA, Miknis FP, Grimes RW, Smith WW, Serio MA (2000) J Hazard Mater 74:81CrossRefGoogle Scholar
  10. 10.
    Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Appl Catal B 9:25CrossRefGoogle Scholar
  11. 11.
    Lide DR (1995) Handbook of chemistry and physics, 76th edn. CRC Press, FloridaGoogle Scholar
  12. 12.
    Zabilskiy M, Djinovic P, Tchernychova E, Tkachenko OP, Kustov LM, Pinta A (2015) ACS Catal 5:5357–5365CrossRefGoogle Scholar
  13. 13.
    Perbandt C, Bacher V, Groves M, Schwefer M, Siefert R, Turek T (2013) Chem Ing Tech 85:705–709CrossRefGoogle Scholar
  14. 14.
    Huang C, Zhu Y, Wang X, Liu X, Wang J, Zhang T (2017) J Catal 347:9–20CrossRefGoogle Scholar
  15. 15.
    Zeng HC, Pang XY (1997) Appl Catal B 13:113–122CrossRefGoogle Scholar
  16. 16.
    Yuzaki K, Yarimizu T, Aoyagi K, Ito S, Kunimori K (1998) Catal Today 45:129–134CrossRefGoogle Scholar
  17. 17.
    Yuichi O, Kazushi K, Ming B, Tatsuo M (1999) J Chem Phys 110:8221–8224CrossRefGoogle Scholar
  18. 18.
    Stoeva N, Atanasova G, Spassova I, Nickolov R, Khristova M (2016) Reac Kinet Mech Cat 118:199–214CrossRefGoogle Scholar
  19. 19.
    Ciambelli P, Benedetto AD, Garufi E, Pirone R, Russo G (1998) J Catal 175:161–169CrossRefGoogle Scholar
  20. 20.
    Cruz RS, Mascarenhas AJS, Andrade HMC (1998) Appl Catal B 18:223–231CrossRefGoogle Scholar
  21. 21.
    Scher M, Kesore K, Monnig R, Schwieger W, Tissler A, Turek T (1999) Appl Catal A 184:249–256CrossRefGoogle Scholar
  22. 22.
    Ivanova DV, Pinaeva LG, Sadovskaya EM, Isupova LA (2016) J Mol Catal A 412:34–38CrossRefGoogle Scholar
  23. 23.
    Dacquin JP, Lancelot C, Dujardin C, Costa PD, Djega-Mariadassou G, Beaunier P, Kaliaguine S, Vaudreuil S, Royer S, Granger P (2009) Appl Catal B 91:596–604CrossRefGoogle Scholar
  24. 24.
    Medkhali AHA, Narasimharao K, Basahel SN, Mokhtar M (2014) J Memb Separ Tech. 3:206–212CrossRefGoogle Scholar
  25. 25.
    Wu Y, Cordier C, Berrier E, Nuns N, Dujardin C, Granger P (2013) Appl Catal B 140–141:151–163CrossRefGoogle Scholar
  26. 26.
    Li K, Wang XF, Zeng HC (1997) Chem Eng Res Des 75:807–812CrossRefGoogle Scholar
  27. 27.
    Akihiro T, Hisahiro E, Yasutake T (2015) Reac Kinet Mech Cat 114:409–420CrossRefGoogle Scholar
  28. 28.
    Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Appl Catal B 9:25CrossRefGoogle Scholar
  29. 29.
    Swamy CS (1996) Cristopher. J Catal Rev Sci Eng 34:409–425CrossRefGoogle Scholar
  30. 30.
    Arai H, Yamada T, Eguchi K (1986) Seiyama. Appl Catal 26:265–276CrossRefGoogle Scholar
  31. 31.
    Beaurain A, Dujardin C, Granger P (2012) Appl Catal B 125:149–157CrossRefGoogle Scholar
  32. 32.
    Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) J Catal 267:5–13CrossRefGoogle Scholar
  33. 33.
    Russo N, Mescia D, Fino D, Saracco G, Specchia V (2007) Ind Eng Chem Res 46:4226–4231CrossRefGoogle Scholar
  34. 34.
    Alini S, Basile F, Blasioli S, Vaccari A (2005) Appl Catal B 70:323–329CrossRefGoogle Scholar
  35. 35.
    Babiniec SM, Coker EN, Miller JE, Ambrosini A (2015) Sol Energy 118:451–459CrossRefGoogle Scholar
  36. 36.
    Franken T, Palkovits R (2015) Appl Catal B 176–177:298–305CrossRefGoogle Scholar
  37. 37.
    Technical Note (2012) BASF-The Chemical Company, New Jersey. Accessed Feb 2012
  38. 38.
    Zhang R, Hua C, Wang B, Jiang Y (2016) J Catal 6:200Google Scholar
  39. 39.
    Alini S, Basile F, Blasioli S, Rinaldi C, Vaccari A (2007) Appl Catal B 70:323–329CrossRefGoogle Scholar
  40. 40.
    Charoonsuk T, Vittayakorn W, Vittayakorn N, Seeharaj P, Maensiri S (2015) Ceram Int 41:S87–S94CrossRefGoogle Scholar
  41. 41.
    Russo N, Fino D, Saracco G, Specchia V (2007) Ind Eng Chem Res 119:228–232Google Scholar
  42. 42.
    Shimizu A, Tanaka K, Fujimori M (2000) Chemosphere-Global Change Sci 2:425–443CrossRefGoogle Scholar
  43. 43.
    Berger RJ, Pérez-Ramirez J, Kapteijn F, Moulijn JA (2002) J Chem Eng 90:173–183CrossRefGoogle Scholar
  44. 44.
    Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Appl Catal B 9:25–64CrossRefGoogle Scholar
  45. 45.
    Ivanov DV, Pinaeva LG, Sadovskaya EM, Isupova LA (2016) J Mol Catal A 412:34–38CrossRefGoogle Scholar
  46. 46.
    Leglise J, Petunchi JO, Hall WK (1984) J Catal 86:392–399CrossRefGoogle Scholar
  47. 47.
    Monshi A, Foroughi MR, Monshi MR (2012) World J Nano Sci Eng 2:154–160CrossRefGoogle Scholar
  48. 48.
    Mieda H, Mineshige A, Saito A, Yazawa T, Yoshioka H, Mori R (2014) J Power Sources 272:422–426CrossRefGoogle Scholar
  49. 49.
    Da Conceicao L, Silva A, Ribeiro NFP, Souza MMVM (2011) Mater Res Bull 46:308–314CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • U. W. Hartley
    • 1
  • V. Tongnan
    • 1
  • N. Laosiripojana
    • 2
  • P. Kim-Lohsoontorn
    • 3
  • K. Li
    • 4
  1. 1.Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS)King Mongkut’s University of Technology North BangkokBangkokThailand
  2. 2.The Joint Graduate School of Energy and EnvironmentKing Mongkut’s University of Technology ThonburiBangkokThailand
  3. 3.Department of Chemical EngineeringChulalongkorn UniversityBangkokThailand
  4. 4.Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations