Skip to main content
Log in

Kinetics and isotherm modeling of phenol adsorption by immobilizable activated carbon

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

For the present study, activated carbon–epoxidized natural rubber–poly(vinyl)chloride composite was fabricated on the glass plates to remove phenol from the aqueous solution. The best fitting of kinetics and isotherm modeling was established using the nonlinear and linear regression analyses. The statistical functions such as R2, χ2 and RMSE were used to determine the best-fitting of the adsorption modeling. It was found that the adsorption data best-fitted the PSO kinetics model for both nonlinear and linear regression analyses. The best-fitting isotherm models for both analyses was the Freundlich model with the highest R2 and lowest χ2 and RMSE values among all models. The intraparticle diffusion was the sole rate-controlling step during the phenol uptake onto the immobilized AC composite. The plot exhibited multilinear portions, which corresponded to three stages of adsorption. The nonlinear regression modeling for kinetics and isotherm achieved higher R2 with lower χ2 and RMSE values as compared to the linear regression showing that the former analysis is more robust, accurate and consistent than the latter approach. Based on the results of the analysis, it is highly recommended to use nonlinear regression when dealing with the adsorption data for the specific and accurate fitting of kinetics and isotherm models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

K L :

Langmuir constant (L mg−1)

q m :

Maximum adsorption capacity (mg g−1)

b T :

Temkin isotherm constant

K T :

Temkin isotherm equilibrium binding constant (L g−1)

K ad :

Dubinin–Radushkevich isotherm constant (mol2 kJ−2)

ε :

Dubinin–Radushkevich isotherm constant

q d :

Theoretical isotherm saturation capacity (mg g−1)

K R :

Redlich–Peterson isotherm constant (L g−1)

A R :

Redlich–Peterson isotherm constant (mg−1)

g :

Redlich–Peterson isotherm exponent

PAN:

Polyacrylonitrile

PET:

Polyehtylene terephthalate

R :

Universal gas constant (8.314 J mol−1 K−1)

References

  1. Streicher J, Ruhl AS, Gnirß R, Jekel M (2016) Chemosphere 156:88–94

    Article  CAS  Google Scholar 

  2. Jawad AH, Rashid RA, Ishak MAM, Wilson LD (2016) Desalin Water Treat 57:25194–25206

    Article  CAS  Google Scholar 

  3. Bedin KC, Martins AC, Cazetta AL, Pezoti O, Almeida VC (2016) Chem Eng J 286:476–484

    Article  CAS  Google Scholar 

  4. Anisuzzaman SM, Joseph CG, Krishnaiah D, Bono A, Suali E, Abang S, Fai LM (2016) Water Res Ind 16:29–36

    Article  Google Scholar 

  5. Wong S, Lee Y, Ngadi N, Inuwa IM, Mohamed NB (2017) Chin J Chem Eng 26:1003–1011

    Article  Google Scholar 

  6. Sudhakar P, Soni H (2018) J Env Chem Eng 6:3135–3149

    Article  Google Scholar 

  7. Torrellas SÁ, García Lovera R, Escalona N, Sepúlveda C, Sotelo JL, García J (2015) Chem Eng J 279:788–798

    Article  CAS  Google Scholar 

  8. Ahmad R, Ahmad Z, Khan AU, Mastoi NR, Aslam M, Kim J (2016) J Environ Chem Eng 4:4143–4164

    Article  CAS  Google Scholar 

  9. Nyamukamba P, Okoh O, Tichagwa L, Greyling C (2016) Int J Photoenergy 2016. https://doi.org/10.1155/2016/3162976

    Article  Google Scholar 

  10. Murgolo S, Yargeau V, Gerbasi R, Visentin F, El Habra N, Ricco G, Lacchetti I, Carere M, Curri ML, Mascolo G (2017) Chem Eng J 318:103–111

    Article  CAS  Google Scholar 

  11. Nawi MA, Kean LC, Tanaka K, Jab MS (2003) Appl Catal B 46:165–174

    Article  CAS  Google Scholar 

  12. Srikanth B, Goutham R, Narayan RB, Ramprasath A, Gopinath K, Sankaranarayanan A (2017) J Environ Manage 200:60–78

    Article  CAS  Google Scholar 

  13. Ghoreishian SM, Badii K, Norouzi M, Malek K (2016) Appl Surf Sci 365:252–262

    Article  CAS  Google Scholar 

  14. Nawi MA, Sabar S (2012) Sheilatina. J Colloid Interface Sci 372:80–87

    Article  CAS  Google Scholar 

  15. Bahrudin NN, Nawi MA, Nawawi WI (2018) Mater Res Bull 106:388–395

    Article  CAS  Google Scholar 

  16. Bahrudin NN, Nawi MA (2018) Korean J Chem Eng 35:1532–1541

    Article  CAS  Google Scholar 

  17. Ngoh YS, Nawi MA (2016) Int J Environ Sci Technol 13:907–926

    Article  CAS  Google Scholar 

  18. Wan Ismail WIN, Ain S, Zaharudin R, Jawad AH, Ishak M, Ismail K, Sahid S (2015) Int J Photoenergy 2015

  19. Foo KY, Hameed BH (2010) Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  20. Tan KL, Hameed BH (2017) J Taiwan Inst Chem Eng 74:25–48

    Article  CAS  Google Scholar 

  21. Behera SK, Kim J-H, Guo X, Park H-S (2008) J Hazard Mater 153:1207–1214

    Article  CAS  Google Scholar 

  22. Nebaghe KC, El Boundati Y, Ziat K, Naji A, Rghioui L, Saidi M (2016) Fluid Phase Equilib 430:188–194

    Article  CAS  Google Scholar 

  23. Vrtoch Ľ, Augustín J (2009) Nova Biotechnol 9:199–204

    Google Scholar 

  24. Kumar KV (2006) J Hazard Mater 136:197–202

    Article  CAS  Google Scholar 

  25. Kumar KV, Porkodi K, Rocha F (2008) J Hazard Mater 150:158–165

    Article  CAS  Google Scholar 

  26. Chowdhury S, Das Saha P (2011) Bioremediat J 15:181–188

    Article  CAS  Google Scholar 

  27. Lente G (2018) Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  28. Bahrudin NN, Nawi MA (2018) React Kinet Mech Cat 124:153–169

    Article  CAS  Google Scholar 

  29. Nawi MA, Zain SM (2012) Appl Surf Sci 258:6148–6157

    Article  CAS  Google Scholar 

  30. Nawi MA, Jawad AH, Sabar S, Ngah WSW (2011) Desalination 280:288–296

    Article  CAS  Google Scholar 

  31. Atieh MA (2014) APCBEE Procedia 10:136–141

    Article  CAS  Google Scholar 

  32. Yousef RI, El-Eswed B, Ala’a H (2011) Chem Eng J 171:1143–1149

    Article  CAS  Google Scholar 

  33. Sabar S, Nawi MA (2016) Desalin Water Treat 57:10312–10323

    Article  CAS  Google Scholar 

  34. Nagy B, Mânzatu C, Măicăneanu A, Indolean C, Barbu-Tudoran L, Majdik C (2017) Arab J Chem 10:S3569–S3579

    Article  CAS  Google Scholar 

  35. Ghaffari HR, Pasalari H, Tajvar A, Dindarloo K, Goudarzi B, Alipour V, Ghanbarneajd A (2017) Int J Eng Sci 6:1–11

    Google Scholar 

  36. Wu F-C, Tseng R-L, Juang R-S (2009) Chem Eng J 150:366–373

    Article  CAS  Google Scholar 

  37. Dawodu M, Akpomie K (2016) Alexandria Eng J 55:3211–3218

    Article  Google Scholar 

  38. Inyinbor AA, Adekola FA, Olatunji GA (2016) Water Res Ind 15:14–27

    Article  Google Scholar 

  39. Lorenc-Grabowska E, Gryglewicz G, Diez M (2013) Fuel 114:235–243

    Article  CAS  Google Scholar 

  40. Bahrudin NN, Nawi MA, Nawawi WI (2018) Korean J Chem Eng 35:1450–1461

    Article  CAS  Google Scholar 

  41. Al-Degs YS, El-Barghouthi MI, Issa AA, Khraisheh MA, Walker GM (2006) Water Res 40:2645–2658

    Article  CAS  Google Scholar 

  42. Simonin J-P (2016) Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  43. Li B, Sun K, Guo Y, Tian J, Xue Y, Sun D (2013) Fuel 110:99–106

    Article  CAS  Google Scholar 

  44. Carmona M, Garcia MT, Carnicer A, Madrid M, Rodríguez JF (2014) J Chem Technol Biotechnol 89:1660–1667

    Article  CAS  Google Scholar 

  45. Liu Q-S, Zheng T, Wang P, Jiang J-P, Li N (2010) Chem Eng J 157:348–356

    Article  CAS  Google Scholar 

  46. Abdel-Ghani NT, El-Chaghaby GA, Helal FS (2015) J Adv Res 6:405–415

    Article  CAS  Google Scholar 

  47. Yang G, Chen H, Qin H, Feng Y (2014) Appl Surf Sci 293:299–305

    Article  CAS  Google Scholar 

  48. Asmaly HA, Abussaud B, Saleh TA, Gupta VK, Atieh MA (2015) J Saudi Chem Soc 19:511–520

    Article  Google Scholar 

  49. Yang G, Tang L, Zeng G, Cai Y, Tang J, Pang Y, Zhou Y, Liu Y, Wang J, Zhang S (2015) Chem Eng J 259:854–864

    Article  CAS  Google Scholar 

  50. Lorenc-Grabowska E, Diez MA, Gryglewicz G (2016) J Colloid Interface Sci 469:205–212

    Article  CAS  Google Scholar 

  51. Strachowski P, Bystrzejewski M (2015) Colloids Surf Physicochem Eng Aspects 467:113–123

    Article  CAS  Google Scholar 

  52. Weber WJ, Morris JC (1963) J Sanit Eng Div 89:31–60

    Google Scholar 

  53. Tran HN, You S-J, Chao H-P (2017) J Environ Manage 188:322–336

    Article  CAS  Google Scholar 

  54. Moreno-Castilla C (2004) Carbon 42:83–94

    Article  CAS  Google Scholar 

  55. Catherine HN, Ou M-H, Manu B, Shih Y-H (2018) Sci Total Environ 635:629–638

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Universiti Sains Malaysia (USM) for providing the research facilities and grant (PRGS: 1001/PKIMIA/843040). N.N. Bahrudin was thankful to USM for Graduate Assistant appointment and Malaysian Ministry of Education for the Mini Budget scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Bahrudin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrudin, N.N., Nawi, M.A. & Lelifajri Kinetics and isotherm modeling of phenol adsorption by immobilizable activated carbon. Reac Kinet Mech Cat 126, 61–82 (2019). https://doi.org/10.1007/s11144-018-01528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-01528-y

Keywords

Navigation