Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 120, Issue 1, pp 55–67 | Cite as

Influence of the preparation method of sulfated zirconia nanoparticles for levulinic acid esterification

  • Margarita Popova
  • Ágnes Szegedi
  • Hristina Lazarova
  • Momtchil Dimitrov
  • Yuri Kalvachev
  • Genoveva Atanasova
  • Alenka Ristić
  • Nicole Wilde
  • Roger Gläser
Article

Abstract

Zirconia nanomaterials were prepared by hydrothermal synthesis with or without template and were modified by post synthesis method with sulfate groups. The materials were thoroughly characterized by X-ray powder diffraction, TEM, N2 physisorption, FTIR spectroscopy of adsorbed pyridine TG analysis and XPS spectroscopy. The catalytic performance of nanosized ZrO2 catalysts and their sulfated modifications was studied in levulinic acid esterification with ethanol. The sulfate group’s dispersion was predetermined by the use of template during the mesoporous zirconia synthesis. A relation between sulfate groups leaching and the applied synthesis conditions (with or without template) of the zirconia nanoparticles was found. Sulfated materials showed significantly higher activity compared to non-sulfated ones. Furthermore, it has been found that the presence of template during the mesoporous ZrO2 nanoparticles preparation influences significantly the zirconia phase and catalytic performance in levulinic acid esterification.

Keywords

Ethyl levulinate Esterification Nanosized sulfated zirconia Biomass utilization 

Notes

Acknowledgments

Financial support from the COST action FP 1306, ДКOCT 01/21 and by the Bulgarian-Hungarian Inter-Academic Exchange Agreement is greatly acknowledged.

References

  1. 1.
    Luque R, Campelo J, Clark J (2013) Handbook of biofuels production: Processes and technologies. Woodhead Publishing Series in Energy No. 15, CambridgeGoogle Scholar
  2. 2.
    Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Angew Chem Int Ed 49:5510–5514CrossRefGoogle Scholar
  3. 3.
    Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas A, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Energy Environ Sci 6:426–464CrossRefGoogle Scholar
  4. 4.
    Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502CrossRefGoogle Scholar
  5. 5.
    Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183CrossRefGoogle Scholar
  6. 6.
    Fernandes DR, Rocha AS, Mai EF, Mota CJA, da Teixeira Silva V (2012) Appl Catal A 425–426:199–204CrossRefGoogle Scholar
  7. 7.
    Clark JH, Budarin V, Dugmore Th, Luque R (2008) Catal Commun 9:1709–1714CrossRefGoogle Scholar
  8. 8.
    Chen X-R, Ju Y-H, Mou C-Y (2007) J Phys Chem C 111:18731–18737CrossRefGoogle Scholar
  9. 9.
    Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Energy Environ Sci 1:3265–3272CrossRefGoogle Scholar
  10. 10.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552–3599CrossRefGoogle Scholar
  11. 11.
    Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Angew Chem Int Ed 49:4479–4483CrossRefGoogle Scholar
  12. 12.
    Kuwahara Y, Fujitani T, Yamashita H (2014) Catal Today 237:18–28CrossRefGoogle Scholar
  13. 13.
    Parvulescu V, Coman S, Grange P, Parvulescu VI (1999) Appl Catal A 176:27–43CrossRefGoogle Scholar
  14. 14.
    Melero JA, Morales G, Iglesias J, Paniagua M, Hernández B, Penedo S (2013) Appl Catal A 466:116–122CrossRefGoogle Scholar
  15. 15.
    Kuwahara Y, Kaburagi W, Nemoto K (2014) Appl Catal A 476:186–196CrossRefGoogle Scholar
  16. 16.
    Yadav GD, Yadav AR (2014) Chemical Eng J 243:556–563CrossRefGoogle Scholar
  17. 17.
    Zhang J, Wu ShB, Li B, Zhang HD (2012) ChemCatChem 4(9):1230–1237CrossRefGoogle Scholar
  18. 18.
    Bezergianni S, Dimitriadis A (2013) Renew Sustain Energy Rev 21:110–116CrossRefGoogle Scholar
  19. 19.
    Patil CR, Niphadkar PS, Bokade VV, Joshi PN (2014) Catal Commun 43:188–191CrossRefGoogle Scholar
  20. 20.
    Pasquale G, Vázquez P, Romanelli G, Baronetti G (2012) Catal Commun 18:115–120CrossRefGoogle Scholar
  21. 21.
    Dutta S, De S, Saha B (2013) Biomass Bioenergy 55:355–369CrossRefGoogle Scholar
  22. 22.
    Pileidis FD, Tabassum M, Coutts S, Titirici M-M (2014) Chin J Catal 35(6):929–936CrossRefGoogle Scholar
  23. 23.
    Trens Ph, Hudson MJ, Denoyel R (1998) J Mater Chem 8(9):2147–2152CrossRefGoogle Scholar
  24. 24.
    Serrano DP, Calleja G, Pizarro P, Gálvez P (2014) Inter J Hydrog Energy 39:4812–4819CrossRefGoogle Scholar
  25. 25.
    Rumplecker A, Kleitz F, Li W, Salabas EL, Schüth F (2007) Chem Mater 19:485–496CrossRefGoogle Scholar
  26. 26.
    Gu D, Schüth F (2014) Chem Soc Rev 43:313–344CrossRefGoogle Scholar
  27. 27.
    Ardizzone S, Bianchi CL, Grassi E (1998) Coll Surf A 135:41–51CrossRefGoogle Scholar
  28. 28.
    Arata K, Hino M, Yamagata N (1990) Bull Chem Soc Jpn 63:244–246CrossRefGoogle Scholar
  29. 29.
    Tichit D, El Alami D, Figueras F (1996) J Catal 163:18–27CrossRefGoogle Scholar
  30. 30.
    Ward DA, Ko EI (1994) J Catal 150:18–33CrossRefGoogle Scholar
  31. 31.
    Clearfield A, Serrette GPD, Khazi-Syed AH (1994) Catal Today 20:295–312CrossRefGoogle Scholar
  32. 32.
    Ecormier MA, Wilson K, Lee AF (2003) J Catal 215:57–65CrossRefGoogle Scholar
  33. 33.
    Hino M, Kurashige M, Matsuhashi H, Arata K (2006) Thermochim Acta 441:35–41CrossRefGoogle Scholar
  34. 34.
    Cirujano FG, Corma A (2015) Llabrés i Xamena FX. Chem Eng Sci 124(3):52–60CrossRefGoogle Scholar
  35. 35.
    Nandiwale KY, Yadava SK, Bokade VV (2014) J Energy Chem 23(4):535–674CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Margarita Popova
    • 1
  • Ágnes Szegedi
    • 2
  • Hristina Lazarova
    • 1
  • Momtchil Dimitrov
    • 1
  • Yuri Kalvachev
    • 3
  • Genoveva Atanasova
    • 4
  • Alenka Ristić
    • 5
  • Nicole Wilde
    • 6
  • Roger Gläser
    • 6
  1. 1.Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Research Centre for Natural Sciences, Institute of Materials and Environmental ChemistryHungarian Academy of SciencesBudapestHungary
  3. 3.Institute of Mineralogy and CrystallographyBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  5. 5.National Institute of Chemistry SloveniaLjubljanaSlovenia
  6. 6.Institute of Chemical TechnologyUniversität LeipzigLeipzigGermany

Personalised recommendations