Skip to main content
Log in

Influence of the preparation method of sulfated zirconia nanoparticles for levulinic acid esterification

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Zirconia nanomaterials were prepared by hydrothermal synthesis with or without template and were modified by post synthesis method with sulfate groups. The materials were thoroughly characterized by X-ray powder diffraction, TEM, N2 physisorption, FTIR spectroscopy of adsorbed pyridine TG analysis and XPS spectroscopy. The catalytic performance of nanosized ZrO2 catalysts and their sulfated modifications was studied in levulinic acid esterification with ethanol. The sulfate group’s dispersion was predetermined by the use of template during the mesoporous zirconia synthesis. A relation between sulfate groups leaching and the applied synthesis conditions (with or without template) of the zirconia nanoparticles was found. Sulfated materials showed significantly higher activity compared to non-sulfated ones. Furthermore, it has been found that the presence of template during the mesoporous ZrO2 nanoparticles preparation influences significantly the zirconia phase and catalytic performance in levulinic acid esterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luque R, Campelo J, Clark J (2013) Handbook of biofuels production: Processes and technologies. Woodhead Publishing Series in Energy No. 15, Cambridge

    Google Scholar 

  2. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Angew Chem Int Ed 49:5510–5514

    Article  CAS  Google Scholar 

  3. Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas A, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Energy Environ Sci 6:426–464

    Article  CAS  Google Scholar 

  4. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  5. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  6. Fernandes DR, Rocha AS, Mai EF, Mota CJA, da Teixeira Silva V (2012) Appl Catal A 425–426:199–204

    Article  Google Scholar 

  7. Clark JH, Budarin V, Dugmore Th, Luque R (2008) Catal Commun 9:1709–1714

    Article  CAS  Google Scholar 

  8. Chen X-R, Ju Y-H, Mou C-Y (2007) J Phys Chem C 111:18731–18737

    Article  CAS  Google Scholar 

  9. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Energy Environ Sci 1:3265–3272

    Article  Google Scholar 

  10. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  11. Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Angew Chem Int Ed 49:4479–4483

    Article  CAS  Google Scholar 

  12. Kuwahara Y, Fujitani T, Yamashita H (2014) Catal Today 237:18–28

    Article  CAS  Google Scholar 

  13. Parvulescu V, Coman S, Grange P, Parvulescu VI (1999) Appl Catal A 176:27–43

    Article  CAS  Google Scholar 

  14. Melero JA, Morales G, Iglesias J, Paniagua M, Hernández B, Penedo S (2013) Appl Catal A 466:116–122

    Article  CAS  Google Scholar 

  15. Kuwahara Y, Kaburagi W, Nemoto K (2014) Appl Catal A 476:186–196

    Article  CAS  Google Scholar 

  16. Yadav GD, Yadav AR (2014) Chemical Eng J 243:556–563

    Article  CAS  Google Scholar 

  17. Zhang J, Wu ShB, Li B, Zhang HD (2012) ChemCatChem 4(9):1230–1237

    Article  CAS  Google Scholar 

  18. Bezergianni S, Dimitriadis A (2013) Renew Sustain Energy Rev 21:110–116

    Article  CAS  Google Scholar 

  19. Patil CR, Niphadkar PS, Bokade VV, Joshi PN (2014) Catal Commun 43:188–191

    Article  CAS  Google Scholar 

  20. Pasquale G, Vázquez P, Romanelli G, Baronetti G (2012) Catal Commun 18:115–120

    Article  CAS  Google Scholar 

  21. Dutta S, De S, Saha B (2013) Biomass Bioenergy 55:355–369

    Article  CAS  Google Scholar 

  22. Pileidis FD, Tabassum M, Coutts S, Titirici M-M (2014) Chin J Catal 35(6):929–936

    Article  CAS  Google Scholar 

  23. Trens Ph, Hudson MJ, Denoyel R (1998) J Mater Chem 8(9):2147–2152

    Article  CAS  Google Scholar 

  24. Serrano DP, Calleja G, Pizarro P, Gálvez P (2014) Inter J Hydrog Energy 39:4812–4819

    Article  CAS  Google Scholar 

  25. Rumplecker A, Kleitz F, Li W, Salabas EL, Schüth F (2007) Chem Mater 19:485–496

    Article  CAS  Google Scholar 

  26. Gu D, Schüth F (2014) Chem Soc Rev 43:313–344

    Article  CAS  Google Scholar 

  27. Ardizzone S, Bianchi CL, Grassi E (1998) Coll Surf A 135:41–51

    Article  CAS  Google Scholar 

  28. Arata K, Hino M, Yamagata N (1990) Bull Chem Soc Jpn 63:244–246

    Article  CAS  Google Scholar 

  29. Tichit D, El Alami D, Figueras F (1996) J Catal 163:18–27

    Article  CAS  Google Scholar 

  30. Ward DA, Ko EI (1994) J Catal 150:18–33

    Article  CAS  Google Scholar 

  31. Clearfield A, Serrette GPD, Khazi-Syed AH (1994) Catal Today 20:295–312

    Article  CAS  Google Scholar 

  32. Ecormier MA, Wilson K, Lee AF (2003) J Catal 215:57–65

    Article  CAS  Google Scholar 

  33. Hino M, Kurashige M, Matsuhashi H, Arata K (2006) Thermochim Acta 441:35–41

    Article  CAS  Google Scholar 

  34. Cirujano FG, Corma A (2015) Llabrés i Xamena FX. Chem Eng Sci 124(3):52–60

    Article  CAS  Google Scholar 

  35. Nandiwale KY, Yadava SK, Bokade VV (2014) J Energy Chem 23(4):535–674

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the COST action FP 1306, ДКOCT 01/21 and by the Bulgarian-Hungarian Inter-Academic Exchange Agreement is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Popova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, M., Szegedi, Á., Lazarova, H. et al. Influence of the preparation method of sulfated zirconia nanoparticles for levulinic acid esterification. Reac Kinet Mech Cat 120, 55–67 (2017). https://doi.org/10.1007/s11144-016-1088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1088-4

Keywords

Navigation