Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 119, Issue 2, pp 685–697 | Cite as

Zeolite-Y encapsulated metal complexes of cobalt(II) as catalyst for the hydroxylation of phenol

  • Z. Khodadadi
  • R. Mahmoudian
Article

Abstract

The hydroxylation of phenol was investigated using cobalt(II) complexes of bidentate ligands including N,N′-ethylenebis(salicylideneamine)(salen), N,N′-propylenbis(salicylideneamine)(salpn) and N,N′-phenylenebis(salicylideneamine)(salophen) encapsulated in zeolite-Y. The catalysts were characterized by Fourier transform infrared and X-ray diffraction analyses to confirm the complex encapsulation. These complexes catalyze the liquid-phase hydroxylation of phenol, through H2O2, to catechol and hydroquinone as major and minor products, respectively. The activities of all prepared catalysts were tested for the oxidation of phenol and hydrogen peroxide. The overall reaction conditions were optimized to get maximum hydroxylation gain to consider the concentration of substrate and oxidant, amount of catalyst, and the reaction temperature. The zeolite encapsulated complexes of cobalt(II) were found to be catalytically active toward the hydroxilation of phenol. Under the optimized reaction conditions, [Co-(salen)]-Y showed the highest conversion, about 43 %, after 6 h which was followed by [Co-(salpn)]-Y with 39 % conversion and [Co-(salophen)]-Y showing the lowest efficiency with 35 % conversion. The hydroxylation of phenol without catalyst and with Co/zeolite-Y catalyst showed poor results.

Keywords

Co(II) complexes Zeolite-Y Phenol hydroxylation Catechol Hydroquinone 

Notes

Acknowledgments

The authors are grateful to the financial support from the Islamic Azad University, South Tehran branch. This study has been done under the format of project research “Zeolite-Y encapsulated metal complexes of Cobalt(II) as catalyst for the hydroxylation of phenol”.

References

  1. 1.
    Bowers C, Dutta PK (1990) J Catal 122:271–279CrossRefGoogle Scholar
  2. 2.
    Knops-Gerrits P-P, De Vos D, Thibault-Starzyk F, Jacobs PA (1994) Nature 369:543–546CrossRefGoogle Scholar
  3. 3.
    Agarwal DD, Bhatnagar RP, Jain R, Srivastava S (1990) J Chem Soc Perkin Trans 2:989–992CrossRefGoogle Scholar
  4. 4.
    Maurya MR, Chandrakar AK, Chand S (2007) J Mol Catal A 274:192–201CrossRefGoogle Scholar
  5. 5.
    Nethravathi BP, Reddy KR, Mahendra KN (2014) J Porous Mater 21:285–291CrossRefGoogle Scholar
  6. 6.
    Maurya M, Saklani H, Kumar A, Chand S (2004) Catal Lett 93:121–127CrossRefGoogle Scholar
  7. 7.
    Seelan S, Sinha AK (2003) Appl Cat A 238:201–209CrossRefGoogle Scholar
  8. 8.
    Nethravathi B, Mahendra K (2010) J Porous Mater 17:107–113CrossRefGoogle Scholar
  9. 9.
    Nethravathi BP, Mahendra KN, Reddy KR (2011) J Porous Mater 18:389–397CrossRefGoogle Scholar
  10. 10.
    Sheldon RA, van Santen RA (1995) Catalytic oxidation: principles and applications: a course of the Netherlands Institute for Catalysis Research (NIOK). World Scientific, SingaporeCrossRefGoogle Scholar
  11. 11.
    Arpe HJ (1999) Industrial organic chemicals: starting materials and intermediates—An Ullmann’s Encyclopedia. Wiley, New YorkGoogle Scholar
  12. 12.
    Maurya MR, Titinchi SJJ, Chand S (2004) J Mol Catal A 214:257–264CrossRefGoogle Scholar
  13. 13.
    Maurya M, Titinchi SJ, Chand S (2003) Catal Lett 89:219–227CrossRefGoogle Scholar
  14. 14.
    Maurya M, Kumar M, Titinchi SJ, Abbo H, Chand S (2003) Catal Lett 86:97–105CrossRefGoogle Scholar
  15. 15.
    Maurya MR, Titinchi SJJ, Chand S, Mishra IM (2002) J Mol Catal A 180:201–209CrossRefGoogle Scholar
  16. 16.
    Jacob CR, Varkey SP, Ratnasamy P (1998) Microporous Mesoporous Mater 22:465–474CrossRefGoogle Scholar
  17. 17.
    Maumy M, Capdevielle P (1996) J Mol Catal A 113:159–166CrossRefGoogle Scholar
  18. 18.
    Bania KK, Bharali D, Viswanathan B, Deka RC (2012) Inorg Chem 51:1657–1674CrossRefGoogle Scholar
  19. 19.
    Sophiphun O, Demir D, Föttinger K, Rupprechter G, Loiha S, Neramittagapong A, Prayoonpokarach S, Wittayakun J (2016) Reac Kinet Mech Cat 117:705–713CrossRefGoogle Scholar
  20. 20.
    Sophiphun O, Föttinger K, Loiha S, Neramittagapong A, Prayoonpokarach S, Rupprechter G, Wittayakun J (2015) Reac Kinet Mech Cat 116:549–561CrossRefGoogle Scholar
  21. 21.
    Peyrovi MH, Mahdavi V, Salehi MA, Mahmoodian R (2005) Catal Commun 6:476–479CrossRefGoogle Scholar
  22. 22.
    Alizadeh M, Farzaneh F, Ghandi M (2003) J Mol Catal A 194:283–287CrossRefGoogle Scholar
  23. 23.
    Güneş A, Bayraktar O, Yılmaz S (2006) Ind Eng Chem Res 45:54–61CrossRefGoogle Scholar
  24. 24.
    Maurya MR, Titinchi SJJ, Chand S (2003) J Mol Catal A 193:165–176CrossRefGoogle Scholar
  25. 25.
    Joseph T, Sajanikumari CS, Deshpande SS, Gopinathan S (1999) Indian J Chem Sect A 38:792–796Google Scholar
  26. 26.
    Hailu SL, Nair BU, Redi-Abshiro M, Aravindhan R, Diaz I, Tessema M (2015) RSC Adv 5:88636–88645CrossRefGoogle Scholar
  27. 27.
    Hosseini-Ghazvini SMB, Safari P, Mobinikhaledi A, Zendehdel M (2015) Reac Kinet Mech Cat 115:703–718CrossRefGoogle Scholar
  28. 28.
    Salavati-Niasari M, Bazarganipour M (2006) Catal Commun 7:336–343CrossRefGoogle Scholar
  29. 29.
    Maurya MR, Singh B, Adão P, Avecilla F, Costa Pessoa J (2007) Eur J Inorg Chem 2007:5720–5734CrossRefGoogle Scholar
  30. 30.
    Mobinikhaledi A, Zendehdel M, Safari P (2014) J Porous Mater 21:565–577CrossRefGoogle Scholar
  31. 31.
    Mugo JN, Mapolie SF, van Wyk JL (2010) Inorg Chim Acta 363:2643–2651CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Applied Chemistry, South Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Shazand Petrochemical CoAräkIran

Personalised recommendations