Reaction Kinetics, Mechanisms and Catalysis

, Volume 119, Issue 2, pp 481–490 | Cite as

Silane-bridged diphosphine ligands for nickel-catalyzed ethylene oligomerization



In this study, bis(diphenyl phosphine) dimethyl silane (L1), bis(diphenyl phosphine) methyl dimethyl silane (L2), bis(diphenyl phosphine methyl) dimethyl silane (L3) and their nickel (II) halide complexes, L1/NiBr2 (C1), L2/NiBr2 (C2), L3/NiBr2 (C3), were synthesized and characterized. The X-ray single-crystal analysis of C3 complex showed bidentate coordination on the Ni center. In combination with methylaluminoxane as co-catalyst, these complexes produced catalytic systems for ethylene dimerization to butylene with catalytic activities of up to 3.12 × 106 g mol−1 (cat.) h−1 and selectivities up to 97.6 %. With the fine-tuned ligand backbone, such a PSiP-based catalyst system provides a model for precise understanding of the impact of ligand variations on catalytic performance.


Ethylene dimerization 1-Butylene Nickel complexes Methylaluminoxane (MAO) 



This study was supported by the National Natural Science Foundation of China (U1162114), Program for New Century Excellent Talents in University (NCET-07-0142) and the Provincial Key Laboratory of Oil & Gas Chemical Technology (HXHG2012-04).


  1. 1.
    Malgas-Enus R, Mapolie SF (2014) Inorg Chim Acta 409:96–105CrossRefGoogle Scholar
  2. 2.
    Boffa LS, Novak BM (2000) Chem Rev 100:1479–1494CrossRefGoogle Scholar
  3. 3.
    Mecking S (2001) Angew Chem Int Ed 40:534–540CrossRefGoogle Scholar
  4. 4.
    Gibson VC, Spitzmesser SK (2003) Chem Rev 103:283–316CrossRefGoogle Scholar
  5. 5.
    Malinoski JM, Brookhart M (2003) Organometallics 22:5324–5335CrossRefGoogle Scholar
  6. 6.
    Chen Q, Yu J, Huang J (2007) Organometallics 26:617–625CrossRefGoogle Scholar
  7. 7.
    Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169–1204CrossRefGoogle Scholar
  8. 8.
    Cornils B, Herrmann WA (1996) Applied homogeneous catalysis with organometallic compounds. VCH, WeinheimCrossRefGoogle Scholar
  9. 9.
    Breuil P-AR, Magna L, Olivier-Bourbigou H (2015) Catal Lett 145:173–192CrossRefGoogle Scholar
  10. 10.
    Boudier A, Breuil P-AR, Magna L, Olivier-Bourbigou H, Braunstein P (2012) J Organomet Chem 718:31–37CrossRefGoogle Scholar
  11. 11.
    Cooley NA, Green SM, Wass DF, Heslop K, Orpen AG, Pringle PG (2001) Organometallics 20:4769–4771CrossRefGoogle Scholar
  12. 12.
    Dennett JN, Gillon AL, Heslop K, Hyett DJ, Fleming JS, Lloyd-Jones CE, Orpen AG, Pringle PG, Wass DF, Scutt JN (2004) Organometallics 23:6077–6079CrossRefGoogle Scholar
  13. 13.
    Boulens P, Lutz M, Jeanneau E, Olivier-Bourbigou H, Reek JN, Breuil PAR (2014) Eur J Inorg Chem 2014:3754–3762CrossRefGoogle Scholar
  14. 14.
    Keim W (2013) Angew Chem Int Ed 52:12492–12496CrossRefGoogle Scholar
  15. 15.
    Boulens P, Pellier E, Jeanneau E, Reek JN, Olivier-Bourbigou Hln, Breuil P-AR (2015) Organometallics 34:1139–1142CrossRefGoogle Scholar
  16. 16.
    Overett MJ, Blann K, Bollmann A, de Villiers R, Dixon JT, Killian E, Maumela MC, Maumela H, McGuinness DS, Morgan DH (2008) J Mol Catal A 283:114–119CrossRefGoogle Scholar
  17. 17.
    Sun Y, Chen Y, Mao G, Ning Y, Jiang T (2014) Chin Sci Bull 59:2613–2617CrossRefGoogle Scholar
  18. 18.
    Jiang T, Chen H, Ning Y, Chen W (2006) Chin Sci Bull 51:521–523CrossRefGoogle Scholar
  19. 19.
    Guo C-Y, Xu H, Zhang M, Zhang X, Yan F, Yuan G (2009) Catal Commun 10:1467–1471CrossRefGoogle Scholar
  20. 20.
    Abbo HS, Titinchi SJ (2013) Molecules 18:4728–4738CrossRefGoogle Scholar
  21. 21.
    Wang T, Dong B, Chen Y-H, Mao G-L, Jiang T (2015) J Organomet Chem 798:388–392CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • XueJiao Meng
    • 1
  • Le Zhang
    • 1
  • YanHui Chen
    • 1
  • Tao Jiang
    • 1
  1. 1.College of Chemical Engineering and Material ScienceTianjin University of Science and TechnologyTianjinChina

Personalised recommendations