Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 119, Issue 1, pp 259–272 | Cite as

Catalytic application of some perovskite nano-oxides for the one-pot synthesis of 1,8-dioxodecahydroacridines

  • Haman Tavakkoli
  • Haleh Sanaeishoar
  • Fouad Mohave
  • Zohreh Nouroozi
  • Maryam Moeinirad
Article
  • 156 Downloads

Abstract

Perovskite-type mixed oxides with the formula of La0.5Gd0.2Pb0.3CoO3 and Gd0.7Sr0.3MnO3 have been synthesized using the citrate gel method. The synthesized perovskites were characterized via FTIR, XRD, SEM, N2 sorption analysis, and energy dispersion X-ray spectroscopic analysis. XRD results show that single phase perovskites have been obtained. On the other hand, N2 sorption analysis of La0.5Gd0.2Pb0.3CoO3 and Gd0.7Sr0.3MnO3 revealed that perovskites with total BET surface area of 0.75, 8.66 m2 g−1 and average pore diameter of 59.21, 28.782 nm have been synthesized. Moreover, the catalytic activities of the synthesized perovskites as multi-functional catalysts were evaluated using a multicomponent reaction of dimedone, aromatic aldehydes, and ammonium acetate under solvent-free conditions.

Keywords

Perovskite-type nano-oxides Multicomponent reactions Acridines 1,8-Dioxodecahydroacridines 

References

  1. 1.
    Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H (2014) Chem Rev 114:10292–10368CrossRefGoogle Scholar
  2. 2.
    Niu G, Guo X, Wang L (2015) J Mater Chem A 3:8970–8980CrossRefGoogle Scholar
  3. 3.
    Parravanos G (1952) J Chem Phys 20:342–343CrossRefGoogle Scholar
  4. 4.
    Burange AS, Jayaram VR, Shukla R, Tyagi KA (2013) Catal Commun 40:27–31CrossRefGoogle Scholar
  5. 5.
    Li P, Ouyang S, Xi G, Kako T, Ye J (2012) J Phys Chem C 116:7621–7628CrossRefGoogle Scholar
  6. 6.
    Singh SP, Iwasaki T, Terao J, Kambe N (2011) Tetrahedron Lett 52:774–776CrossRefGoogle Scholar
  7. 7.
    Sanaeishoar T, Tavakkoli H, Mohave F (2014) Appl Catal A Gen 470:56–62CrossRefGoogle Scholar
  8. 8.
    Arai H, Yamada T, Eguchi K, Seiyama T (1986) Appl Catal 26:265–276CrossRefGoogle Scholar
  9. 9.
    Royer S, Alamdari H, Duprez D, Kaliaguine S (2005) Appl Catal B Environ 58:273–288CrossRefGoogle Scholar
  10. 10.
    Leanza R, Rossetti I, Fabbrini L, Oliva C, Forni L (2000) Appl Catal B Environ 28:55–64CrossRefGoogle Scholar
  11. 11.
    Kucharczyk B, Tylus W (2004) Catal Today 90:121–126CrossRefGoogle Scholar
  12. 12.
    Galdino-Pitta MR, Pitta MGR, Lima MCA, Galdino SL, Pitta IR (2013) Mini-Rev Med Chem 13:1256–1271CrossRefGoogle Scholar
  13. 13.
    Demeunynck M (2004) Expert Opin Ther Patents 14:55–70CrossRefGoogle Scholar
  14. 14.
    Charmantray F, Martelli A (2001) Curr Pharm Des 7:1703–1724CrossRefGoogle Scholar
  15. 15.
    Plsikova J, Janovec L, Koval J, Ungvarsky J, Mikes J, Jendzelovsky R, Fedorocko P, Imrich J, Kristian P, Kasparkova J, Brabec V, Kozurkov M (2012) Eur J Med Chem 57:283–295CrossRefGoogle Scholar
  16. 16.
    Chandra T, Garg N, Lata S, Saxena KK, Kumar A (2010) Eur J Med Chem 45:1772–1776CrossRefGoogle Scholar
  17. 17.
    Wainwright M, Antimicr J (2001) Chemotherapy 47:1–13Google Scholar
  18. 18.
    Li F, Xu Y, Li H, Wang C, Lu A, Sun S (2014) New J Chem 38:1396–1400CrossRefGoogle Scholar
  19. 19.
    Srividya N, Ramamurthy P, Ramakrishnan VT (1998) Spectrochim Acta Mol Biomol Spectrosc 54:245–253CrossRefGoogle Scholar
  20. 20.
    Timpe HJ, Ulrich S, Decker S, Fouassier JP (1993) Macromolecules 26:4560–4566CrossRefGoogle Scholar
  21. 21.
    Nakhi A, Srinivas PTV, Shafiqur-Rahman M, Kishore R, Seerapu GPK, Lalith-Kumar K, Haldar D, Basaveswara-Rao MV, Pal M (2013) Med Chem Lett 23:1828–1833CrossRefGoogle Scholar
  22. 22.
    Davoodnia A, Khojastehnezhad A, Tavakoli-Hoseini N (2011) Bull Korean Chem Soc 32:2243–2248CrossRefGoogle Scholar
  23. 23.
    Pradhan S, Mishra BG (2015) RSC Adv 5:86179–816190CrossRefGoogle Scholar
  24. 24.
    Khojastehnezhad A, Moeinpour F, Vafaei M (2015) J Mex Chem Soc 59:29–35Google Scholar
  25. 25.
    Alinezhad H, Tajbakhsh M, Norouzi M, Baghery S, Rakhtshah J (2013) J Chem Sci 125:1517–1522CrossRefGoogle Scholar
  26. 26.
    Vahdat SM, Mardani HR, Golchoubian H, Khavarpour M (2013) Combin Chem High Throughput Screen 16:2–6CrossRefGoogle Scholar
  27. 27.
    Tabari T, Tavakkoli H (2012) Chin J Catal 33:1791–1796CrossRefGoogle Scholar
  28. 28.
    Yazdanbakhsh M, Tavakkoli H, Hosseini SM (2011) Desalination 281:388–395CrossRefGoogle Scholar
  29. 29.
    Sanaeishoar T, Mohave F (2014) J Chem Res 38:470–472CrossRefGoogle Scholar
  30. 30.
    Sanaeishoar H, Nazarpour R, Mohave F (2015) RSC Adv 5:68571–68578CrossRefGoogle Scholar
  31. 31.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  32. 32.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  33. 33.
    Lija K, Senoy T, Anantharaman MR (2016) J Mag Mag Mater 398:174–182CrossRefGoogle Scholar
  34. 34.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  35. 35.
    Moeinpour F, Khojastenezhade A (2012) J Chem 9:504–509Google Scholar
  36. 36.
    Vahdat SM, Akbari M (2011) Orient J Chem 27:1573–1580Google Scholar
  37. 37.
    Davoodnia A, Zar-bidaki A, Behmadi H (2012) Chin J Catal 33:1797–1801CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Haman Tavakkoli
    • 1
  • Haleh Sanaeishoar
    • 1
  • Fouad Mohave
    • 2
  • Zohreh Nouroozi
    • 1
  • Maryam Moeinirad
    • 1
  1. 1.Department of Chemistry, Ahvaz BranchIslamic Azad UniversityAhvazIran
  2. 2.Young Researchers and Elite Club, Ahvaz BranchIslamic Azad UniversityAhvazIran

Personalised recommendations