Reaction Kinetics, Mechanisms and Catalysis

, Volume 118, Issue 1, pp 215–222 | Cite as

Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines

  • Ondřej Matuška
  • Jakub Zápal
  • Radka Hrdličková
  • Miloš Mikoška
  • Jan Pecháček
  • Beáta Vilhanová
  • Jiří Václavík
  • Marek Kuzma
  • Petr Kačer


The role of the sulfonamide moiety of Noyori-Ikariya [Ru(II)Cl(η 6-p-cymene)(S,S)-(N-arylsulfonyl-DPEN)] (where DPEN = 1,2-diphenylethylene-1,2-diamine) half-sandwich complexes in the asymmetric transfer hydrogenation (ATH) of imines (1-methyl-3,4-dihydroisoquinoline and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline) was investigated. Nine complexes were synthesized and characterized, most of which have not been previously reported and a majority of the corresponding ligands (N-arylsulfonyl-DPEN) have not been described in imine ATH. The study demonstrates that the structure of the sulfonamide fragment strongly affects the catalytic activity. By monitoring the reaction kinetics, it was found that the reactivity of certain complexes was moderately enhanced and the enantioselectivity was affected as well, albeit to a lesser extent. No simple structure–activity pattern was found, suggesting that extensive screening experiments are necessary in order to obtain the optimal catalyst for a particular substrate. The study complements other previously reported works on structure–activity relationships concerning Ru(II)-catalyzed ATH by adding a new dimension of investigation.


Ruthenium Asymmetric transfer hydrogenation Dihydroisoquinolines Sulfonamide 



This work was financially supported by the Czech Science Foundation (P106/12/1276 and 15-08992S), grant for long-term conceptual development of the Institute of Microbiology of the Czech Academy of Sciences (RVO: 61388971) and the National Program of Sustainability (NPU I LO1215 and NPU I LO1509). The research was conducted within the infrastructure built up from the support of the Operational Program Prague—Competitiveness (projects CZ.2.16/3.1.00/22197, CZ.2.16/3.1.00/24501 and CZ.2.16/3.1.00/24023).

Supplementary material

11144_2016_991_MOESM1_ESM.pdf (494 kb)
Supplementary material 1 (PDF 494 kb)


  1. 1.
    Davies NM, Teng XW (2003) Adv Pharm 1:242–252Google Scholar
  2. 2.
    Arnum PV (2006) Pharm Technol 30:58–67Google Scholar
  3. 3.
    Ojima I (2010) Catalytic Asymmetric synthesis, 3rd edn. Wiley, HobokenCrossRefGoogle Scholar
  4. 4.
    Knowles WS, Noyori R (2007) Acc Chem Res 40:1238–1239CrossRefGoogle Scholar
  5. 5.
    Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R (1995) J Am Chem Soc 117:7562–7563CrossRefGoogle Scholar
  6. 6.
    Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R (1996) J Am Chem Soc 118:2521–2522CrossRefGoogle Scholar
  7. 7.
    Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R (1996) J Am Chem Soc 118:4916–4917CrossRefGoogle Scholar
  8. 8.
    Wang C, Wu X, Xiao J (2008) Chem Asian J 3:1750–1770CrossRefGoogle Scholar
  9. 9.
    Václavík J, Kačer P, Kuzma M, Červený L (2011) Molecules 16:5460–5495CrossRefGoogle Scholar
  10. 10.
    Takehara J, Hashiguchi S, Fujii A, Inoue S, Ikariya T, Noyori R (1996) Chem Commun 2:233–234CrossRefGoogle Scholar
  11. 11.
    Šot P, Vilhanová B, Pecháček J, Václavík J, Zápal J, Kuzma M, Kačer P (2014) Tetrahedron 25:1346–1351CrossRefGoogle Scholar
  12. 12.
    Šot P, Kuzma M, Václavík J, Pecháček J, Přech J, Januščák J, Kačer P (2012) Organometallics 31:6496–6499CrossRefGoogle Scholar
  13. 13.
    Václavík J, Pecháček J, Vilhanová B, Šot P, Januščák J, Matoušek V, Přech J, Bártová S, Kuzma M, Kačer P (2013) Catal Lett 143:555–562CrossRefGoogle Scholar
  14. 14.
    Přech J, Václavík J, Šot P, Pecháček J, Vilhanová B, Januščák J, Syslová K, Pažout R, Maixner J, Zápal J, Kuzma M, Kačer P (2013) Catal Commun 36:67–70CrossRefGoogle Scholar
  15. 15.
    Gulamhussen AM, Kačer P, Přech J, Kuzma M, Červený L (2009) React Kinet Catal Lett 97:335–340CrossRefGoogle Scholar
  16. 16.
    Pecháček J, Václavík J, Přech J, Šot P, Januščák J, Vilhanová B, Vavřík J, Kuzma M, Kačer P (2013) Tetrahedron 24:233–239CrossRefGoogle Scholar
  17. 17.
    Kuzma M, Václavík J, Novák P, Přech J, Januščák J, Červený J, Pecháček J, Šot P, Vilhanová B, Matoušek V, Goncharova II, Urbanová M, Kačer P (2013) Dalton Trans 42:5174–5182CrossRefGoogle Scholar
  18. 18.
    Martins JED, Clarkson GJ, Wills M (2009) Org Lett 11:847–850CrossRefGoogle Scholar
  19. 19.
    Martins JED, Contreras Redondo MA, Wills M (2010) Tetrahedron 21:2258–2264CrossRefGoogle Scholar
  20. 20.
    Kei F, Cheung K, Hayes AM, Hannedouche J, Yim ASY, Wills M (2005) J Org Chem 70:3188–3197CrossRefGoogle Scholar
  21. 21.
    Morris DJ, Hayes AM, Wills M (2006) J Org Chem 71:7035–7044CrossRefGoogle Scholar
  22. 22.
    Martins JED, Wills M (2009) Tetrahedron 65:5782–5786CrossRefGoogle Scholar
  23. 23.
    Hodgkinson R, Jurčík V, Zanotti-Gerosa A, Nedden HG, Blackaby A, Clarkson GJ, Wills M (2014) Organometallics 33:5517–5524CrossRefGoogle Scholar
  24. 24.
    Ohkuma T, Utsumi N, Watanabe M, Tsutsumi K, Arai N, Murata K (2007) Org Lett 9:2565–2567CrossRefGoogle Scholar
  25. 25.
    Shirai S, Nara H, Kayaki Y, Ikariya T (2009) Organometallics 28:802–809CrossRefGoogle Scholar
  26. 26.
    Wang Z-J, Zhou H-F, Wang T-L, He Y-M, Fan Q-H (2009) Green Chem 11:767–769CrossRefGoogle Scholar
  27. 27.
    Li X, Blacker J, Houson I, Wu X, Xiao J (2006) Synlett 8:1155–1160Google Scholar
  28. 28.
    Yin L, Zheng Y, Jia X, Li X, Chan ASC (2010) Tetrahedron 21:2390–2393CrossRefGoogle Scholar
  29. 29.
    Lu C, Luo Z, Huang L, Li X (2011) Tetrahedron 22:722–727CrossRefGoogle Scholar
  30. 30.
    Luo Z, Qin F, Yan S, Li X (2012) Tetrahedron 23:333–338CrossRefGoogle Scholar
  31. 31.
    Přech J, Matoušek V, Václavík J, Pecháček J, Syslová K, Šot P, Januščák J, Vilhanová B, Kuzma M, Kačer P (2013) Am J Anal Chem 4:125–133CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Ondřej Matuška
    • 1
  • Jakub Zápal
    • 2
  • Radka Hrdličková
    • 1
  • Miloš Mikoška
    • 1
  • Jan Pecháček
    • 1
  • Beáta Vilhanová
    • 1
  • Jiří Václavík
    • 2
    • 3
  • Marek Kuzma
    • 2
  • Petr Kačer
    • 1
  1. 1.Department of Organic TechnologyUniversity of Chemistry and TechnologyPrague 6Czech Republic
  2. 2.Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i.Academy of Sciences of the Czech RepublicPrague 4Czech Republic
  3. 3.Institute of Organic Chemistry and Biochemistry, v.v.i.Academy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations