Skip to main content
Log in

Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The role of the sulfonamide moiety of Noyori-Ikariya [Ru(II)Cl(η 6-p-cymene)(S,S)-(N-arylsulfonyl-DPEN)] (where DPEN = 1,2-diphenylethylene-1,2-diamine) half-sandwich complexes in the asymmetric transfer hydrogenation (ATH) of imines (1-methyl-3,4-dihydroisoquinoline and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline) was investigated. Nine complexes were synthesized and characterized, most of which have not been previously reported and a majority of the corresponding ligands (N-arylsulfonyl-DPEN) have not been described in imine ATH. The study demonstrates that the structure of the sulfonamide fragment strongly affects the catalytic activity. By monitoring the reaction kinetics, it was found that the reactivity of certain complexes was moderately enhanced and the enantioselectivity was affected as well, albeit to a lesser extent. No simple structure–activity pattern was found, suggesting that extensive screening experiments are necessary in order to obtain the optimal catalyst for a particular substrate. The study complements other previously reported works on structure–activity relationships concerning Ru(II)-catalyzed ATH by adding a new dimension of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The reactions of [RuCl2(p-cymene)]2 with (S,S)-TsDPEN were also followed in situ by NMR spectroscopy, which confirmed full conversion to complexes 2. Hence, the rather low yields of complexes 2 were mainly due to their purification via crystallization on a small scale.

References

  1. Davies NM, Teng XW (2003) Adv Pharm 1:242–252

    Google Scholar 

  2. Arnum PV (2006) Pharm Technol 30:58–67

    Google Scholar 

  3. Ojima I (2010) Catalytic Asymmetric synthesis, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  4. Knowles WS, Noyori R (2007) Acc Chem Res 40:1238–1239

    Article  CAS  Google Scholar 

  5. Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R (1995) J Am Chem Soc 117:7562–7563

    Article  CAS  Google Scholar 

  6. Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R (1996) J Am Chem Soc 118:2521–2522

    Article  CAS  Google Scholar 

  7. Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R (1996) J Am Chem Soc 118:4916–4917

    Article  CAS  Google Scholar 

  8. Wang C, Wu X, Xiao J (2008) Chem Asian J 3:1750–1770

    Article  CAS  Google Scholar 

  9. Václavík J, Kačer P, Kuzma M, Červený L (2011) Molecules 16:5460–5495

    Article  Google Scholar 

  10. Takehara J, Hashiguchi S, Fujii A, Inoue S, Ikariya T, Noyori R (1996) Chem Commun 2:233–234

    Article  Google Scholar 

  11. Šot P, Vilhanová B, Pecháček J, Václavík J, Zápal J, Kuzma M, Kačer P (2014) Tetrahedron 25:1346–1351

    Article  Google Scholar 

  12. Šot P, Kuzma M, Václavík J, Pecháček J, Přech J, Januščák J, Kačer P (2012) Organometallics 31:6496–6499

    Article  Google Scholar 

  13. Václavík J, Pecháček J, Vilhanová B, Šot P, Januščák J, Matoušek V, Přech J, Bártová S, Kuzma M, Kačer P (2013) Catal Lett 143:555–562

    Article  Google Scholar 

  14. Přech J, Václavík J, Šot P, Pecháček J, Vilhanová B, Januščák J, Syslová K, Pažout R, Maixner J, Zápal J, Kuzma M, Kačer P (2013) Catal Commun 36:67–70

    Article  Google Scholar 

  15. Gulamhussen AM, Kačer P, Přech J, Kuzma M, Červený L (2009) React Kinet Catal Lett 97:335–340

    Article  CAS  Google Scholar 

  16. Pecháček J, Václavík J, Přech J, Šot P, Januščák J, Vilhanová B, Vavřík J, Kuzma M, Kačer P (2013) Tetrahedron 24:233–239

    Article  Google Scholar 

  17. Kuzma M, Václavík J, Novák P, Přech J, Januščák J, Červený J, Pecháček J, Šot P, Vilhanová B, Matoušek V, Goncharova II, Urbanová M, Kačer P (2013) Dalton Trans 42:5174–5182

    Article  CAS  Google Scholar 

  18. Martins JED, Clarkson GJ, Wills M (2009) Org Lett 11:847–850

    Article  CAS  Google Scholar 

  19. Martins JED, Contreras Redondo MA, Wills M (2010) Tetrahedron 21:2258–2264

    Article  CAS  Google Scholar 

  20. Kei F, Cheung K, Hayes AM, Hannedouche J, Yim ASY, Wills M (2005) J Org Chem 70:3188–3197

    Article  Google Scholar 

  21. Morris DJ, Hayes AM, Wills M (2006) J Org Chem 71:7035–7044

    Article  CAS  Google Scholar 

  22. Martins JED, Wills M (2009) Tetrahedron 65:5782–5786

    Article  CAS  Google Scholar 

  23. Hodgkinson R, Jurčík V, Zanotti-Gerosa A, Nedden HG, Blackaby A, Clarkson GJ, Wills M (2014) Organometallics 33:5517–5524

    Article  CAS  Google Scholar 

  24. Ohkuma T, Utsumi N, Watanabe M, Tsutsumi K, Arai N, Murata K (2007) Org Lett 9:2565–2567

    Article  CAS  Google Scholar 

  25. Shirai S, Nara H, Kayaki Y, Ikariya T (2009) Organometallics 28:802–809

    Article  CAS  Google Scholar 

  26. Wang Z-J, Zhou H-F, Wang T-L, He Y-M, Fan Q-H (2009) Green Chem 11:767–769

    Article  CAS  Google Scholar 

  27. Li X, Blacker J, Houson I, Wu X, Xiao J (2006) Synlett 8:1155–1160

    Google Scholar 

  28. Yin L, Zheng Y, Jia X, Li X, Chan ASC (2010) Tetrahedron 21:2390–2393

    Article  CAS  Google Scholar 

  29. Lu C, Luo Z, Huang L, Li X (2011) Tetrahedron 22:722–727

    Article  CAS  Google Scholar 

  30. Luo Z, Qin F, Yan S, Li X (2012) Tetrahedron 23:333–338

    Article  CAS  Google Scholar 

  31. Přech J, Matoušek V, Václavík J, Pecháček J, Syslová K, Šot P, Januščák J, Vilhanová B, Kuzma M, Kačer P (2013) Am J Anal Chem 4:125–133

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Czech Science Foundation (P106/12/1276 and 15-08992S), grant for long-term conceptual development of the Institute of Microbiology of the Czech Academy of Sciences (RVO: 61388971) and the National Program of Sustainability (NPU I LO1215 and NPU I LO1509). The research was conducted within the infrastructure built up from the support of the Operational Program Prague—Competitiveness (projects CZ.2.16/3.1.00/22197, CZ.2.16/3.1.00/24501 and CZ.2.16/3.1.00/24023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kačer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matuška, O., Zápal, J., Hrdličková, R. et al. Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines. Reac Kinet Mech Cat 118, 215–222 (2016). https://doi.org/10.1007/s11144-016-0991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-0991-z

Keywords

Navigation