Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 117, Issue 2, pp 521–536 | Cite as

Effect of aging on the CO oxidation properties of copper manganese oxides prepared by hydrolysis–coprecipitation using tetramethyl ammonium hydroxide

  • Hisahiro Einaga
  • Akihiro Kiya
Article

Abstract

Copper manganese mixed oxides were prepared by a hydrolysis-coprecipitation method using tetramethyl ammonium hydroxide and calcined at 573–873 K. The effect of aging treatment after the coprecipitation process on the catalytic properties of the calcined mixed oxides for CO oxidation was investigated. XRD and EXAFS studies showed that spinel phases were mainly formed in the aged catalysts and the degree of disorder in the Cu–Mn spinel oxide phases increased. The aging treatment suppressed the formation of crystallites of mixed oxides, but the treatment promoted the crystallization of impurity CuO phase. The aged catalyst exhibited higher activity for CO oxidation than the unaged catalysts. The optimum calcination temperature for obtaining the highest activity was changed by aging treatment. Refluxing during the aging treatment led to the detrimental effect on the CO oxidation activities.

Keywords

Copper–manganese oxides Hydrolysis–coprecipitation CO oxidation Effect of aging 

Notes

Acknowledgments

This study was financially supported by New Energy and Industrial Technology Development Organization.

Supplementary material

11144_2016_974_MOESM1_ESM.docx (266 kb)
Supplementary material 1 (DOCX 265 kb)

References

  1. 1.
    Zafiris GS, Gorte RJ (1993) J Catal 140:418CrossRefGoogle Scholar
  2. 2.
    Chen H, Tong X, Li Y (2009) Appl Catal A 370:59CrossRefGoogle Scholar
  3. 3.
    Li WB, Chu WB, Zhuang M, Hua J (2004) Catal Today 93–95:205CrossRefGoogle Scholar
  4. 4.
    Morales MR, Barbero BP, Cadús LE (2008) Fuel 87:1177CrossRefGoogle Scholar
  5. 5.
    Njagi EC, Genuino HC, King’ondu CK, Dharmarathna S, Suib SL (2012) Appl Catal A 421–422:154CrossRefGoogle Scholar
  6. 6.
    Kondrat SA, Davies TE, Zu Z, Boldrin P, Bartley JK, Carley AF, Taylor SH, Rosseinsky MJ, Hutchings GJ (2011) J Catal 281:279CrossRefGoogle Scholar
  7. 7.
    Mirzaei AA, Shaterian HR, Joyner RW, Stockenhuber M, Taylor SH, Hutchings GJ (2003) Catal Commun 4:17CrossRefGoogle Scholar
  8. 8.
    Clarke TJ, Davies TE, Kondart SA, Taylor SH (2015) Appl Catal B 165:222CrossRefGoogle Scholar
  9. 9.
    Njagi EC, Genuino HC, King’ondu CK, Chen C-H, Horvath D, Suib SL (2011) Int J Hydrog Energy 36:6768CrossRefGoogle Scholar
  10. 10.
    Cai L-N, Guo Y, Lu A-H, Branton P, Li WC (2012) J Mol Catal A 360:35CrossRefGoogle Scholar
  11. 11.
    Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T (2009) Appl Catal B 89:420CrossRefGoogle Scholar
  12. 12.
    Rogers TH, Piggot CS, Bahlke WH, Jennings JM (1921) J Am Chem Soc 43:1973CrossRefGoogle Scholar
  13. 13.
    Veprek S, Cocke DL, Kehl S, Oswald HR (1986) J Catal 100:250CrossRefGoogle Scholar
  14. 14.
    Porta P, Moretti G, Jacono ML, Musicanti M, Nardella A (1991) J Mater Chem 1:129CrossRefGoogle Scholar
  15. 15.
    Tang Z-R, Jones CD, Aldridge JKW, Davies TE, Bartley JK, Carley AF, Taylor SH, Allix M, Dickinson C, Rosseinsky MJ, Claridge JB, Xu Z, Crudace MJ, Hutchings GJ (2009) Chem Cat Chem 1:247Google Scholar
  16. 16.
    Hosseini SA, Niaei A, Salari D, Alvarez-Galvan MC, Fierro JLG (2014) Ceram Int 40:6157CrossRefGoogle Scholar
  17. 17.
    Njagi EC, Chen C-H, Genuino H, Galindo H, Huang H, Suib SL (2010) Appl Catal B 99:103CrossRefGoogle Scholar
  18. 18.
    Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1996) Catal Lett 42:21CrossRefGoogle Scholar
  19. 19.
    Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1998) Appl Catal A 166:143CrossRefGoogle Scholar
  20. 20.
    Jones C, Cole KJ, Taylor SH, Crudace MJ, Hutchings GJ (2009) J Mol Catal A 305:121CrossRefGoogle Scholar
  21. 21.
    Porta P, Moretti G, Musicanti M, Nardella A (1993) Solid State Ion 63–65:257CrossRefGoogle Scholar
  22. 22.
    Einaga H, Kiya A, Yoshioka S, Teraoka Y (2014) Catal Sci Technol 4:3713CrossRefGoogle Scholar
  23. 23.
    Koningsberger DC (1993) Jpn J Appl Phys Suppl 32–2:8Google Scholar
  24. 24.
    Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565CrossRefGoogle Scholar
  25. 25.
    Ressler T, Brock SL, Wong J, Suib SL (1993) J Phys Chem B 103:6407CrossRefGoogle Scholar
  26. 26.
    Ressler T, Wong J, Roots J, Smith IL (2000) Environ Sci Technol 34:950CrossRefGoogle Scholar
  27. 27.
    Pauly N, Tougaard S, Yubero F (2014) Surf Sci 620:17CrossRefGoogle Scholar
  28. 28.
    Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA (1988) Phys Rev B 38:11322CrossRefGoogle Scholar
  29. 29.
    Svintsitskiy DA, Chupakhin AP, Slavinskaya EM, Stonkus OA, Stadnichenko AI, Koscheev SV, Boronin AI (2013) J Mol Catal A: Chem 368:95CrossRefGoogle Scholar
  30. 30.
    Chuah GK, Jaenicke S, Cheong SA, Chan KS (1996) Appl Catal A 145:267–284CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Energy and Material Sciences, Faculty of Engineering SciencesKyushu UniversityFukuokaJapan

Personalised recommendations