Reaction Kinetics, Mechanisms and Catalysis

, Volume 117, Issue 2, pp 655–674 | Cite as

Hydrogen generation from ethanol by steam reforming using a Rh catalyst supported over low acidic Al2O3

  • Pankaj Kumar Sharma
  • Navin Saxena
  • Prasun Kumar Roy
  • Arti Bhatt


In this paper, we have studied the effect of the synthesis method on the acidity of alumina (Al2O3) support using NH3 chemisorption and impregnated Rh on the Al2O3 support having lower acidity to yield Rh/Al2O3 catalyst. These materials were characterized using different physico-chemical techniques such as BET, XRD, SEM–EDS, TPR, CO pulse chemisorption, and TPO reactions. The performance of the Rh/Al2O3 catalyst was evaluated in catalytic ESR reaction at varying temperatures and space velocities. Our studies revealed that the Rh/Al2O3 catalyst is capable of breaking the C–C bond with a complete elimination of C2 compounds, particularly ethylene in the exit product stream with high H2 yield under the reaction conditions applied. Furthermore, the nature of intermediate species and products formed during catalytic ESR conditions was identified using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), which revealed that both the acetate driven and formate driven mechanism of ESR prevail over the surface of the prepared catalyst. In view of the absence of ethylene in the product stream as well as in the DRIFT study, it was concluded that due to the inherent lower acidity of the alumina support, ethanol molecules prefer the dehydrogenation route over dehydration. DRIFT studies also brought out the significant role of Rh towards aiding ethanol decomposition. Based on these studies, a plausible mechanism for catalytic ESR reaction over Rh/Al2O3 has been proposed. Time-on-stream studies revealed the good stability of the catalyst over extended periods (~20 h).


Acidity Rh/Al2O3 Ethanol steam reforming DRIFT Mechanism H2 production 



The authors are grateful to Director, CFEES for providing the laboratory facilities. The authors are also thankful to SSPL, Delhi for carrying out XRD analyses.

Supplementary material

11144_2015_959_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1,724 kb)


  1. 1.
    Schrope M (2001) Which way to energy utopia? Nature 414(6865):682–684CrossRefGoogle Scholar
  2. 2.
    Semelsberger TA, Ott KC, Borup RL, Greene HL (2006) Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid–acid catalysts. Appl Catal B 65(3–4):291–300. doi: 10.1016/j.apcatb.2006.02.015 CrossRefGoogle Scholar
  3. 3.
    Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107(10):3952–3991. doi: 10.1021/cr0501994 CrossRefGoogle Scholar
  4. 4.
    Xuan J, Leung MKH, Leung DYC, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sustain Energy Rev 13(6–7):1301–1313. doi: 10.1016/j.rser.2008.09.027 CrossRefGoogle Scholar
  5. 5.
    Frusteri F, Freni S (2007) Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell. J Power Sources 173(1):200–209. doi: 10.1016/j.jpowsour.2007.04.065 CrossRefGoogle Scholar
  6. 6.
    Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy 32(15):3238–3247. doi: 10.1016/j.ijhydene.2007.04.038 CrossRefGoogle Scholar
  7. 7.
    Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117(1):39–49. doi: 10.1016/j.cej.2005.12.008 CrossRefGoogle Scholar
  8. 8.
    Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112(7):4094–4123. doi: 10.1021/cr2000114 CrossRefGoogle Scholar
  9. 9.
    Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19(5):2098–2106. doi: 10.1021/ef0500538 CrossRefGoogle Scholar
  10. 10.
    Bshish A, Yaakob Z, Narayanan B, Ramakrishnan R, Ebshish A (2011) Steam-reforming of ethanol for hydrogen production. Chem Pap 65(3):251–266. doi: 10.2478/s11696-010-0100-0 CrossRefGoogle Scholar
  11. 11.
    Zhang C, Yue H, Huang Z, Li S, Wu G, Ma X, Gong J (2013) Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal-support interaction and catalytic stability. ACS Sustain Chem Eng 1(1):161–173. doi: 10.1021/sc300081q Google Scholar
  12. 12.
    Barroso M, Gomez M, Arrúa L, Abello M (2015) Effect of the water–ethanol molar ratio in the ethanol steam reforming reaction over a Co/CeO2/MgAl2O4 catalyst. Reac Kinet Mech Catal. doi: 10.1007/s11144-015-0852-1 Google Scholar
  13. 13.
    Lakhapatri SL, Abraham MA (2009) Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al2O3 catalyst during steam reforming of sulfur-doped n-hexadecane. Appl Catal A 364(1–2):113–121. doi: 10.1016/j.apcata.2009.05.035 CrossRefGoogle Scholar
  14. 14.
    Sheng PY, Yee A, Bowmaker GA, Idriss H (2002) H2 production from ethanol over Rh–Pt/CeO2 catalysts: the role of Rh for the efficient dissociation of the carbon-carbon bond. J Catal 208(2):393–403. doi: 10.1006/jcat.2002.3576 CrossRefGoogle Scholar
  15. 15.
    Diagne C, Idriss H, Kiennemann A (2002) Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catal Commun 3(12):565–571. doi: 10.1016/S1566-7367(02)00226-1 CrossRefGoogle Scholar
  16. 16.
    Sanchez-Sanchez MC, Yerga RMN, Kondarides DI, Verykios XE, Fierro JLG (2010) Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3. J Phys Chem A 114(11):3873–3882CrossRefGoogle Scholar
  17. 17.
    Sheng PY, Bowmaker GA, Idriss H (2004) The reactions of ethanol over Au/CeO2. Appl Catal A 261(2):171–181. doi: 10.1016/j.apcata.2003.10.046 CrossRefGoogle Scholar
  18. 18.
    Raskó J, Hancz A, Erdőhelyi A (2004) Surface species and gas phase products in steam reforming of ethanol on TiO2 and Rh/TiO2. Appl Catal A 269(1–2):13–25. doi: 10.1016/j.apcata.2004.03.053 CrossRefGoogle Scholar
  19. 19.
    Schmal M, Cesar DV, Souza MMVM, Guarido CE (2011) Drifts and TPD analyses of ethanol on Pt catalysts over Al2O3 and ZrO2—partial oxidation of ethanol. Can J Chem Eng 89(5):1166–1175. doi: 10.1002/cjce.20597 CrossRefGoogle Scholar
  20. 20.
    Erdőhelyi A, Raskó J, Kecskés T, Tóth M, Dömök M, Baán K (2006) Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal Today 116(3):367–376. doi: 10.1016/j.cattod.2006.05.073 CrossRefGoogle Scholar
  21. 21.
    Yee A, Morrison SJ, Idriss H (1999) A study of the reactions of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. J Catal 186(2):279–295. doi: 10.1006/jcat.1999.2563 CrossRefGoogle Scholar
  22. 22.
    Yee A, Morrison SJ, Idriss H (2000) A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: evidence of benzene formation. J Catal 191(1):30–45. doi: 10.1006/jcat.1999.2765 CrossRefGoogle Scholar
  23. 23.
    Yee A, Morrison SJ, Idriss H (2000) The reactions of ethanol over M/CeO2 catalysts: evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2. Catal Today 63(2–4):327–335. doi: 10.1016/S0920-5861(00)00476-4 CrossRefGoogle Scholar
  24. 24.
    da Silva AM, de Souza KR, Jacobs G, Graham UM, Davis BH, Mattos LV, Noronha FB (2011) Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst. Appl Catal B 102(1–2):94–109. doi: 10.1016/j.apcatb.2010.11.030 CrossRefGoogle Scholar
  25. 25.
    de Lima SM, Silva AM, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2009) Ethanol decomposition and steam reforming of ethanol over CeZrO2 and Pt/CeZrO2 catalyst: reaction mechanism and deactivation. Appl Catal A 352(1–2):95–113. doi: 10.1016/j.apcata.2008.09.040 CrossRefGoogle Scholar
  26. 26.
    de Lima SM, da Silva AM, da Costa LOO, Assaf JM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl Catal A 377(1–2):181–190. doi: 10.1016/j.apcata.2010.01.036 CrossRefGoogle Scholar
  27. 27.
    Trueba M, Trasatti SP (2005) γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 17:3393–3403. doi: 10.1002/ejic.200500348 CrossRefGoogle Scholar
  28. 28.
    Devianto H, Li ZL, Yoon SP, Han J, Nam SW, Lim T-H, Lee H-I (2010) The effect of Al addition on the prevention of Ni sintering in bio-ethanol steam reforming for molten carbonate fuel cells. Int J Hydrog Energy 35(7):2591–2596. doi: 10.1016/j.ijhydene.2009.04.001 CrossRefGoogle Scholar
  29. 29.
    Llorca J, Piscina PRdl, Sales J, Homs N (2001) Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts. Chem Commun 7:641–642. doi: 10.1039/b100334h CrossRefGoogle Scholar
  30. 30.
    Morterra C, Zecchina A, Coluccia S, Chiorino A (1977) I.r. spectroscopic study of CO2 adsorption onto [small eta]-Al2O3. J Chem Soc Faraday Trans 1 73:1544–1560. doi: 10.1039/f19777301544 CrossRefGoogle Scholar
  31. 31.
    Can F, Le Valant A, Bion N, Epron F, Duprez D (2008) New active and selective Rh–REOx–Al2O3 catalysts for ethanol steam reforming. J Phys Chem C 112(36):14145–14153. doi: 10.1021/jp801954s CrossRefGoogle Scholar
  32. 32.
    Freni S (2001) Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells. J Power Sources 94(1):14–19. doi: 10.1016/S0378-7753(00)00593-0 CrossRefGoogle Scholar
  33. 33.
    Cavallaro S, Chiodo V, Freni S, Mondello N, Frusteri F (2003) Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC. Appl Catal A 249(1):119–128. doi: 10.1016/S0926-860X(03)00189-3 CrossRefGoogle Scholar
  34. 34.
    Breen JP, Burch R, Coleman HM (2002) Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Appl Catal B 39(1):65–74. doi: 10.1016/S0926-3373(02)00075-9 CrossRefGoogle Scholar
  35. 35.
    Idriss H (2004) Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platin Met Rev 48(3):11CrossRefGoogle Scholar
  36. 36.
    Wang J-H, Lee CS, Lin MC (2009) Mechanism of ethanol reforming: theoretical foundations. J Phys Chem C 113(16):6681–6688. doi: 10.1021/jp810307h CrossRefGoogle Scholar
  37. 37.
    Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325–330. doi:
  38. 38.
    Hung C-C, Chen S-L, Liao Y-K, Chen C-H, Wang J-H (2012) Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3. Int J Hydrog Energy 37(6):4955–4966. doi: 10.1016/j.ijhydene.2011.12.060 CrossRefGoogle Scholar
  39. 39.
    Auprêtre F, Descorme C, Duprez D (2002) Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal Commun 3(6):263–267. doi: 10.1016/S1566-7367(02)00118-8 CrossRefGoogle Scholar
  40. 40.
    Aupretre F, Descorme C, Duprez D, Casanave D, Uzio D (2005) Ethanol steam reforming over MgxNi1−xAl2O3 spinel oxide-supported Rh catalysts. J Catal 233(2):464–477. doi: 10.1016/j.jcat.2005.05.007 CrossRefGoogle Scholar
  41. 41.
    Ferencz Z, Erdőhelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, Papp C, Steinrück HP, Kiss J (2014) Effects of support and Rh additive on co-based catalysts in the ethanol steam reforming reaction. ACS Catal 4(4):1205–1218. doi: 10.1021/cs500045z CrossRefGoogle Scholar
  42. 42.
    Varga E, Ferencz Z, Oszkó A, Erdőhelyi A, Kiss J (2015) Oxidation states of active catalytic centers in ethanol steam reforming reaction on ceria based Rh promoted Co catalysts: an XPS study. J Mol Catal A 397:127–133. doi: 10.1016/j.molcata.2014.11.010 CrossRefGoogle Scholar
  43. 43.
    Sharma PK, Saxena N, Bhatt A, Rajagopal C, Roy PK (2013) Synthesis of mesoporous bimetallic Ni-Cu catalysts supported over ZrO2 by a homogenous urea coprecipitation method for catalytic steam reforming of ethanol. Catal Sci Technol 3(4):1017–1026. doi: 10.1039/c2cy20563g CrossRefGoogle Scholar
  44. 44.
    Taspinar E, Tas AC (1997) Low-temperature chemical synthesis of lanthanum monoaluminate. J Am Ceram Soc 80(1):133–141. doi: 10.1111/j.1151-2916.1997.tb02801.x CrossRefGoogle Scholar
  45. 45.
    Marcelino JEM, Granados-Correa F, Pfeiffer H, Bulbulian S (2012) Synthesis of MgO, ZnO and Al2O3 by solid and solution combustion processes and study of their performances in Co2+ uptake. Ceramics-Silikáty 56(3):254–260Google Scholar
  46. 46.
    Geyer R, Hunold J, Keck M, Kraak P, Pachulski A, Schödel R (2012) Methods for determining the metal crystallite size of Ni supported catalysts. Chem Ing Tech 84(1–2):160–164. doi: 10.1002/cite.201100101 CrossRefGoogle Scholar
  47. 47.
    Souza MCP, Lenzi GG, Colpini LMS, Jorge LMM, Santos OAA (2011) Photocatalytic discoloration of reactive blue 5 g dye in the presence of mixed oxides and with the addition of iron and silver. Braz J Chem Eng 28:393–402CrossRefGoogle Scholar
  48. 48.
    Vis JC, van ‘t Blik HFJ, Huizinga T, van Grondelle J, Prins R (1985) The morphology of rhodium supported on TiO2 and Al2O3 as studied by temperature-programmed reduction-oxidation and transmission electron microscopy. J Catal 95(2):333–345. doi: 10.1016/0021-9517(85)90111-3 CrossRefGoogle Scholar
  49. 49.
    Hwang C-P, Yeh C-T, Zhu Q (1999) Rhodium-oxide species formed on progressive oxidation of rhodium clusters dispersed on alumina. Catal Today 51(1):93–101. doi: 10.1016/S0920-5861(99)00011-5 CrossRefGoogle Scholar
  50. 50.
    Basile F, Fornasari G, Gazzano M, Kiennemann A, Vaccari A (2003) Preparation and characterisation of a stable Rh catalyst for the partial oxidation of methane. J Catal 217(2):245–252. doi: 10.1016/S0021-9517(03)00021-6 CrossRefGoogle Scholar
  51. 51.
    Patel M, Jindal TK, Pant KK (2013) Kinetic study of steam reforming of ethanol on Ni-based Ceria-Zirconia catalyst. Ind Eng Chem Res 52(45):15763–15771. doi: 10.1021/ie401570s CrossRefGoogle Scholar
  52. 52.
    Fajardo HV, Probst LFD (2006) Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts. Appl Catal A 306:134–141. doi: 10.1016/j.apcata.2006.03.043 CrossRefGoogle Scholar
  53. 53.
    Hussein GAM, Sheppard N, Zaki MI, Fahim RB (1991) Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 3. Ethanol over TiO2, ZrO2 and HfO2, and general conclusions from parts 1 to 3. J Chem Soc Faraday Trans 87(16):2661–2668. doi: 10.1039/ft9918702661 CrossRefGoogle Scholar
  54. 54.
    Binet C, Daturi M, Lavalley J-C (1999) IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Today 50(2):207–225. doi: 10.1016/S0920-5861(98)00504-5 CrossRefGoogle Scholar
  55. 55.
    Mattos LV, Noronha FB (2005) Partial oxidation of ethanol on supported Pt catalysts. J Power Sources 145(1):10–15. doi: 10.1016/j.jpowsour.2004.12.034 CrossRefGoogle Scholar
  56. 56.
    Mattos LV, Noronha FB (2005) The influence of the nature of the metal on the performance of cerium oxide supported catalysts in the partial oxidation of ethanol. J Power Sources 152:50–59. doi: 10.1016/j.jpowsour.2004.12.052 CrossRefGoogle Scholar
  57. 57.
    Knoezinger H, Stuebner B (1978) Adsorption of alcohols on alumina. 1. Gravimetric and infrared spectroscopic investigation. J Phys Chem 82(13):1526–1532. doi: 10.1021/j100502a013 CrossRefGoogle Scholar
  58. 58.
    Benítez JJ, Carrizosa I, Odriozola JA (1995) In situ diffuse reflectance infrared (DRIFTS) identification of active sites in the CO + H2 reaction over lanthanide-modified Rh/Al2O3 catalysts. Appl Surf Sci 84(4):391–399. doi: 10.1016/0169-4332(94)00568-0 CrossRefGoogle Scholar
  59. 59.
    Greenler RG (1962) Infrared study of the adsorption of methanol and ethanol on aluminum oxide. J Chem Phys 37(9):2094–2100. doi: 10.1063/1.1733430 CrossRefGoogle Scholar
  60. 60.
    Kagel RO (1967) Infrared investigation of the adsorption and surface reactions of the C1 through C4 normal alcohols on γ -alumina. J Phys Chem 71(4):844–850. doi: 10.1021/j100863a010 CrossRefGoogle Scholar
  61. 61.
    Sanchez-Sanchez MC, Navarro Yerga RM, Kondarides DI, Verykios XE, Fierro JLG (2010) Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on γ-Al2O3. J Phys Chem A 114(11):3873–3882. doi: 10.1021/jp906531x CrossRefGoogle Scholar
  62. 62.
    Knözinger H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev 17(1):31–70. doi: 10.1080/03602457808080878 CrossRefGoogle Scholar
  63. 63.
    Harrison B, Diwell AF, Hallett C (1988) Promoting platinum metals by ceria metal -support interactions in autocatalysts. Platin Met Rev 32(2):73–83Google Scholar
  64. 64.
    Chen L, Choong CKS, Zhong Z, Huang L, Ang TP, Hong L, Lin J (2010) Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst. J Catal 276(2):197–200. doi: 10.1016/j.jcat.2010.08.018 CrossRefGoogle Scholar
  65. 65.
    Laosiripojana N, Assabumrungrat S (2006) Catalytic steam reforming of ethanol over high surface area CeO2: the role of CeO2 as an internal pre-reforming catalyst. Appl Catal B 66(1–2):29–39. doi: 10.1016/j.apcatb.2006.01.011 CrossRefGoogle Scholar
  66. 66.
    Duprez D, Hadj-Aissa M, Barbier J (1989) Effect of steam on the coking of platinum catalysts: I. Inhibiting effect of steam at low partial pressure for the dehydrogenation of cyclopentane and the coking reaction. Appl Catal 49(1):67–74. doi: 10.1016/S0166-9834(00)81422-0 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Pankaj Kumar Sharma
    • 1
  • Navin Saxena
    • 1
  • Prasun Kumar Roy
    • 1
  • Arti Bhatt
    • 1
  1. 1.Centre for Fire, Explosive and Environment SafetyDelhiIndia

Personalised recommendations