Reaction Kinetics, Mechanisms and Catalysis

, Volume 117, Issue 2, pp 487–501 | Cite as

Catalytic oxidation of ethanol in the gas phase over Pt/Rh and Pd catalysts: kinetic study in a spinning-basket flow reactor

  • Stavros G. Poulopoulos


The catalytic oxidation of ethanol in the gas phase over Pt/Rh and Pd monolithic catalysts was performed in a spinning basket flow reactor with the aim of studying kinetics. The reactor was operated under atmospheric pressure and reaction temperature was varied between 50 and 300 °C. The inlet concentrations of ethanol and oxygen were in the range of 0.0060–0.0240 μmol/mL and 0.10–10.0 % v/v, respectively. Gas chromatography was used to follow the progress of the oxidation. Carbon dioxide and small amounts of methane and acetaldehyde were the only products detected in ethanol oxidation over the catalysts tested. Various kinetic models were tested in the analysis of the experimental data obtained. The Marquardt–Levenberg method was used for the minimization of the objective function for the residual sum of squares. The model that takes into account the surface reaction between adsorbed reactants was found to yield the most successful fit for both catalysts. According to this model, the activation energy of ethanol catalytic oxidation over Pt/Rh and Pd is 7903 and 6571 cal mol−1, respectively.


Carberry reactor Langmuir–Hinshelwood Monolithic catalysts 


  1. 1.
    Walter A, Rosillo-Calle F, Dolzan P, Piacente E, da Cunha KB (2008) Biomass Bioenerg 32:730–748CrossRefGoogle Scholar
  2. 2.
    Powers SE, Hunt CS, Heermann SE, Corseuil HX, Rice D, Alvarez PJ (2001) Critical Rev Environ Sci Technol 31:79–123CrossRefGoogle Scholar
  3. 3.
    Kadam KL (2002) Energy Policy 30:371–384CrossRefGoogle Scholar
  4. 4.
    Gibson J (2004) Eur Chem News 81:10Google Scholar
  5. 5.
    Poulopoulos SG, Samaras DP, Philippopoulos CJ (2001) Atmos Environ 35:4399–4406CrossRefGoogle Scholar
  6. 6.
    Ismagilov ZR, Dobrynkin NM, Popovskii VV (1979) React Kinet Catal Lett 10:55–59CrossRefGoogle Scholar
  7. 7.
    Kieffer R, Hindermann JP, El Bacha R, Kiennemann A, Deluzarche A (1982) React Kinet Catal Lett 21:17–21CrossRefGoogle Scholar
  8. 8.
    McCabe RW, Mitchell PJ (1983) Ind Eng Chem Prod Res Dev 22:212–217CrossRefGoogle Scholar
  9. 9.
    McCabe RW, Mitchell PJ (1984) Ind Eng Chem Prod Res Dev 23:196–202CrossRefGoogle Scholar
  10. 10.
    Nagal M, Gonzalez RD (1985) Ind Eng Chem Prod Res Dev 24:525–531Google Scholar
  11. 11.
    Barresi AA, Baldi G (1993) Chem Eng Comm 123:17–29CrossRefGoogle Scholar
  12. 12.
    Rajesh H, Ozkan US (1993) Ind Eng Chem Res 32:1622–1630CrossRefGoogle Scholar
  13. 13.
    Pettersson LJ, Jaras SG, Andersson S, Marsh P (1995). In: Frennet A, Bastin JM (eds) Catalysis and automotive pollution control III, Proceedings of the Third international symposium (CAPoC3), Brussels, Belgium, April 20–22, 1994, Elsevier, AmsterdamGoogle Scholar
  14. 14.
    Silva AM, Corro G, Marecot P, Barbier (1998)In: Kruse N, Frennet A, Bastin JM (eds) Catalysis and automotive pollution control IV, Proceedings of the Fourth International Symposium (CAPoC4), Brussels, Belgium, April 9–11, 1997, Elsevier: AmsterdamGoogle Scholar
  15. 15.
    Zhou L, Akgerman A (1995) Ind Eng Chem Res 34:1588–1595CrossRefGoogle Scholar
  16. 16.
    Petkovic LM, Rashkeev SN, Ginosar DM (2009) Catal Today 147:107–114CrossRefGoogle Scholar
  17. 17.
    Rintramee K, Föttinger K, Rupprechter G, Wittayakun J (2012) Appl Catal B: Environ 115–116:225–235CrossRefGoogle Scholar
  18. 18.
    Li Z, Wang J, He K, An X, Huang W, Xie K (2011) J Nat Gas Chem 20:167–172CrossRefGoogle Scholar
  19. 19.
    Poulopoulos SG, Grigoropoulou HP, Philippopoulos CJ (2002) Catal Lett 78:291–296CrossRefGoogle Scholar
  20. 20.
    Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Morales MR, Barbero BP (2008) Cadu´s LE. Fuel 87:1177–1186CrossRefGoogle Scholar
  22. 22.
    Peluso MA, Pronsato E, Sambeth JE, Thomas HJ, Busca G (2008) Appl Catal B: Environ 78:73–79CrossRefGoogle Scholar
  23. 23.
    Cao H, Song W, Gong M, Wang J, Yan S, Liu Z, Chen Y (2009) J Nat Gas Chem 18:83–87CrossRefGoogle Scholar
  24. 24.
    Chuang KT, Zhou B, Tong S (1994) Ind Eng Chem Res 33:1680–1686CrossRefGoogle Scholar
  25. 25.
    Shailesh D, Abraham M (1997) Ind Eng Chem Res 36:1979–1988CrossRefGoogle Scholar
  26. 26.
    Bobaru SC (2006) High pressure STM studies of oxidation catalysis, Thesis, Leiden UniversityGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.School of Chemical EngineeringKazakh-British Technical UniversityAlmatyRepublic of Kazakhstan

Personalised recommendations