Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 117, Issue 1, pp 223–238 | Cite as

Heterogeneous carbonylation of dimethyl ether to methyl acetate over bifunctional catalysts containing Rh and heteropoly acids

  • Yanyong Liu
  • Kazuhisa Murata
  • Megumu Inaba
Article

Abstract

The carbonylation of dimethyl ether to methyl acetate was carried out in a high-pressure flowed fix-bed reaction system over heterogeneous halide-free catalysts. The TG curves indicated that solid 12-tungstosilicic acid had a crystal structure (with six crystallization waters) identical to that of solid 12-tungstophosphoric acid, although they had different number of protons in molecules. The BET surface areas greatly increased by Cs substitution in H4SiW12O40, and Cs3HSiW12O40 showed a BET surface area of 206 m2 g−1. For the DME carbonylation at 473 K on 1 MPa under a CO/DME flow rate ratio of 18, Cs3HSiW12O40 showed a DME conversion (6.7 %) higher than that over Cs2HPW12O40 (4.6 %) because Cs3HSiW12O40 had a larger surface area. Cs3HSiW12O40 and Cs2HPW12O40 showed high selectivity for methyl acetate of (98.0 and 97.5 %). By adding 1.0 wt% Rh in Cs3HSiW12O40, the DME conversion greatly increased from 6.7 to 30.8 % because a multiplier effect occurred between Rh and heteropoly acid. Rh/Cs3HSiW12O40 showed a higher catalytic performance than those over the reported Rh/Cs2HPW12O40 and Rh/H-MOR for the carbonylation. The DME conversion increased with increasing Rh loading from 0 to 1.0 wt% but became almost constant when Rh loading ranged from 1.5 to 3.0 wt% over Rh/Cs3HSiW12O40. With increasing the CO/DME ratio from 1.8 to 45, the DME conversion increased from 0.9 to 99.4 % over Rh/Cs3HSiW12O40 at 473 K under 1 MPa. The 1 wt% Rh/Cs3HSiW12O40 catalyst showed an initial DME conversion of 30.8 % (after 5 min on stream) but the DME conversion decreased to 23.3 % after 5 h on stream at 473 K on 1 MPa under a CO/DME flow rate ratio of 18.

Keywords

Dimethyl ether Heterogeneous carbonylation Methyl acetate Heteropoly acids Rhodium Bifunctional catalyst 

References

  1. 1.
    Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113Google Scholar
  2. 2.
    Misono M (2001) Chem Commun 13:1141CrossRefGoogle Scholar
  3. 3.
    Liu Y, Misono M (2009) Materials 2:2319CrossRefGoogle Scholar
  4. 4.
    Liu Y, Koyano G, Misono M (2000) Top Catal 11:239CrossRefGoogle Scholar
  5. 5.
    Liu Y, Na K, Misono M (1999) J Mol Catal A 141:145CrossRefGoogle Scholar
  6. 6.
    Liu Y, Koyano G, Na K, Misono M (1998) Appl Catal A 166:L263CrossRefGoogle Scholar
  7. 7.
    Liu Y, Murata K, Sakanishi K (2011) Fuel 90:3056CrossRefGoogle Scholar
  8. 8.
    Liu Y, Murata K, Inaba M, Mimura N (2005) Appl Catal B 58:51CrossRefGoogle Scholar
  9. 9.
    Liu Y, Murata K, Inaba M (2004) Green Chem 6:510CrossRefGoogle Scholar
  10. 10.
    Liu Y, Murata K, Hanaoka T, Inaba M, Sakanishi K (2007) J Catal 248:277CrossRefGoogle Scholar
  11. 11.
    Liu Y, Murata K, Inaba M (2006) J Mol Catal A 256:247CrossRefGoogle Scholar
  12. 12.
    Liu Y, Murata K, Inaba M (2005) Catal Commun 6:679CrossRefGoogle Scholar
  13. 13.
    Liu Y, Murata K, Inaba M (2004) Chem Commun 5:582CrossRefGoogle Scholar
  14. 14.
    Liu Y, Murata K, Inaba M, Mimura N (2003) Catal Commun 4:281CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Tan Y, Yang C, Han Y (2008) Catal Commun 9:1916CrossRefGoogle Scholar
  16. 16.
    Zhang Q, Tan Y, Yang C, Han Y (2007) J Mol Catal A 263:149CrossRefGoogle Scholar
  17. 17.
    Pesaresi L, Brown DR, Lee AF, Montero JM, Williams H, Wilson K (2009) Appl Catal A 360:50CrossRefGoogle Scholar
  18. 18.
    Kamiya Y, Sano S, Miura Y, Uchida Y, Ogawa Y, Iwase Y, Okuhara T (2010) Chem Lett 39:881CrossRefGoogle Scholar
  19. 19.
    Tan Y, Xie H, Cui H, Han Y, Zhong B (2005) Catal Today 104:25CrossRefGoogle Scholar
  20. 20.
    Yaripour F, Mollavali M, Mohammadi Jam Sh, Atashi H (2009) Energy Fuel 23:1896CrossRefGoogle Scholar
  21. 21.
    Cai G, Liu Z, Shi R, He C, Yang L, Sun C, Chang Y (1995) Appl Catal A 125:29CrossRefGoogle Scholar
  22. 22.
    Volkova GG, Plyasova LM, Salanov AN, Kustova GN, Yurieva TM, Likholobov VA (2002) Catal Lett 80:175CrossRefGoogle Scholar
  23. 23.
    Volkova GG, Plyasova LM, Shkuratova LN, Budneva AA, Paukshtis EA, Timofeeva MN, Likholobov VA (2004) Stud Surf Sci Catal 147:403CrossRefGoogle Scholar
  24. 24.
    Luzgin MV, Kazantsev MS, Volkova GG, Wang W, Stepanov AG (2011) J Catal 277:72CrossRefGoogle Scholar
  25. 25.
    Luzgin MV, Kazantsev MS, Wang W, Stepanov AG (2009) J Phys Chem C 113:19639CrossRefGoogle Scholar
  26. 26.
    Sardesai A, Lee S, Tartamella T (2002) Energy Sources 24:301CrossRefGoogle Scholar
  27. 27.
    Cheung P, Bhan A, Sunley GJ, Law DJ, Iglesia E (2007) J Catal 245:110CrossRefGoogle Scholar
  28. 28.
    Cheung P, Bhan A, Sunley GJ, Iglesia E (2006) Angew Chem Int Ed 45:1617CrossRefGoogle Scholar
  29. 29.
    Bhan A, Ayman AD, Sunley GJ, Law DJ, Iglesia E (2007) J Am Chem Soc 129:4919CrossRefGoogle Scholar
  30. 30.
    Boronat M, Martinez-Sanchez C, Law D, Corma A (2008) J Am Chem Soc 130:16316CrossRefGoogle Scholar
  31. 31.
    Sunley GJ, Watson DJ (2000) Catal Today 58:293CrossRefGoogle Scholar
  32. 32.
    Howard MJ, Jones MD, Roberts MS, Taylor SA (1993) Catal Today 18:325CrossRefGoogle Scholar
  33. 33.
    Riisager A, Jorgensen B, Wasserscheid P, Fehrmann R (2006) Chem Commun 9:994CrossRefGoogle Scholar
  34. 34.
    Maksimov AL, Losev DV, Kardasheva YS, Karahanov EA (2014) Pet Chem 54:283CrossRefGoogle Scholar
  35. 35.
    Okuhara T, Nishimura T, Watanabe H, Misono M (1992) J Mol Catal 74:247CrossRefGoogle Scholar
  36. 36.
    Miyaji A, Echizen T, Nagata K, Yoshinaga Y, Okuhara T (2003) J Mol Catal A 201:145CrossRefGoogle Scholar
  37. 37.
    Liu Y, Murata K, Inaba M, Takahara I, Okabe K (2011) Catal Today 164:308CrossRefGoogle Scholar
  38. 38.
    Liu Y, Hayakawa T, Ishii T, Kumagai M, Yasuda H, Suzuki K, Hamakawa S, Murata K (2001) Appl Catal A 210:301CrossRefGoogle Scholar
  39. 39.
    Liu Y, Hayakawa T, Suzuki K, Hamakawa S, Tsunoda T, Ishii T, Kumagai M (2002) Appl Catal A 223:137CrossRefGoogle Scholar
  40. 40.
    Liu Y, Hayakawa T, Tsunoda T, Suzuki K, Hamakawa S, Murata K, Shiozaki R, Ishii T, Kumagai M (2003) Top Catal 22:205CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Research Institute of Energy FrontierNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations