Reaction Kinetics, Mechanisms and Catalysis

, Volume 116, Issue 2, pp 549–561 | Cite as

Properties and catalytic performance in phenol hydroxylation of iron on zeolite beta prepared by different methods

  • Onsulang Sophiphun
  • Karin Föttinger
  • Sirinuch Loiha
  • Arthit Neramittagapong
  • Sanchai Prayoonpokarach
  • Günther Rupprechter
  • Jatuporn Wittayakun


Iron (Fe) was loaded on zeolite beta (BEA) in ammonium (NH4BEA) or proton (HBEA) forms by various methods. Fe/HBEA-LSIE and Fe/NH4BEA-LSIE were prepared by liquid state ion exchange (LSIE). This method resulted in low Fe loading and a good dispersion. The form of Fe was Fe2O3 mainly located at the ion exchange position in the zeolite channels. Fe/HBEA-IWI and Fe/HBEA-PM were prepared by incipient wetness impregnation (IWI) and physical mixing (PM), respectively. Both catalysts had higher Fe loading and larger Fe2O3 particles located on both external surface and in the zeolite channels. Despite the different loadings, all samples gave similar phenol conversion in phenol hydroxylation, around 60 % and yielded products catechol (CAT) and hydroquinone (HQ) with the CAT/HQ mole ratio 2:1. After the catalytic testing, all catalysts had a dark color from coking. A further investigation revealed a formation of coke and organic acids. According to temperature programmed oxidation (TPO), heavy coke was produced from Fe/HBEA-LSIE and Fe/NH4BEA-LSIE. The coke from Fe/HBEA-LSIE was heavier than that from Fe/NH4BEA-LSIE. Only light coke was produced from Fe/HBEA-IWI and Fe/HBEA-PM.


Iron Zeolite beta Ion exchange Impregnation Physical mixing Phenol hydroxylation 



Scholarship for Onsulang Sophiphun is from the Office of the Higher Education Commission, Thailand under the program Strategic Scholarships for Frontier Research. We also acknowledge the Synchrotron Light Research Institute for the X-ray absorption beam time.

Supplementary material

11144_2015_908_MOESM1_ESM.docx (11.5 mb)
Supplementary material 1 (DOCX 11725 kb)


  1. 1.
    Clerici MG, Kholdeeva OA (2013) Industrial applications. In: Romano U, Ricci M (eds) Liquid phase oxidation via heterogeneous catalysis. Wiley, HobokenCrossRefGoogle Scholar
  2. 2.
    Lin S, Zhen Y, Wang SM, Dai YM (2000) J Mol Catal A: Chem 156:113–120CrossRefGoogle Scholar
  3. 3.
    Fiegel H, Voges H-W, Hamamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch H-J, Garbe D, Paulus W (2002) Phenol derivatives in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, New YorkGoogle Scholar
  4. 4.
    Atoguchi T, Kanougi T, Yamamoto T, Yao S (2004) J Mol Catal A-Chem 220:183–187CrossRefGoogle Scholar
  5. 5.
    Wang J, Park J-N, Wei X-Y, Lee CW (2003) Chem Commun 9:628–629CrossRefGoogle Scholar
  6. 6.
    Li JPH, Kennedy E (2014) Catal Lett 144:9–15CrossRefGoogle Scholar
  7. 7.
    Balle P, Geiger B, Kureti S (2009) Appl Catal B-Environ 85:109–119CrossRefGoogle Scholar
  8. 8.
    Bortnovsky O, Sobalík Z, Wichterlová B (2001) Micropor Mesopor Mater 46:265–275CrossRefGoogle Scholar
  9. 9.
    Lin T-A, Schwartz LH, Butt JB (1986) J Catal 97:177–187CrossRefGoogle Scholar
  10. 10.
    Barrer RM (1979) Zeolites and clay materials. Academic Press, LondonGoogle Scholar
  11. 11.
    Jia C, Beaunier P, Massiani P (1998) Micropor Mesopor Mater 24:69–82CrossRefGoogle Scholar
  12. 12.
    He C, Wang Y, Cheng Y, Lambert CK, Ralph T (2009) Appl Catal A-Gen 368:121–126CrossRefGoogle Scholar
  13. 13.
    Wittayakun J, Khemthong P, Prayoonpokrach S (2008) Korean J Chem Eng 25:861–864CrossRefGoogle Scholar
  14. 14.
    Loiha S, Prayoonpokarach S, Songsiriritthigun P (2009) Wittayakun. Mater Chem Phys 115:637–640CrossRefGoogle Scholar
  15. 15.
    Dzwigaj S, Stievano L, Wagner FE, Che M (2007) J Phys Chem Solids 68:1885–1891CrossRefGoogle Scholar
  16. 16.
    Capek L, Kreibich V, Dĕdeček J, Grygar T, Wichterlová B, Sobalík Z, Martens JA, Brosius R, Tokarová V (2005) Micropor Mesopor Mater 80:279–289CrossRefGoogle Scholar
  17. 17.
    Chumee J, Grisdanurak N, Neramittagapong S, Wittayakun J (2009) Braz J Chem Eng 26:367–373CrossRefGoogle Scholar
  18. 18.
    Kulawong S, Prayoonpokarach S, Neramittagapong A, Wittayakun J (2011) J Ind Eng Chem 17:346–351CrossRefGoogle Scholar
  19. 19.
    Ma L, Chang H, Yang S, Chen L, Fu L, Li J (2012) Chem Eng J 209:652–660CrossRefGoogle Scholar
  20. 20.
    Camblor MA, Pérez-Pariente J (1991) Zeolites 11:202–210CrossRefGoogle Scholar
  21. 21.
    Condon JB (2006) Surface area and porosity determination by physisorption: measurement and theory. Elsevier, OxfordGoogle Scholar
  22. 22.
    Boron´ P, Chmielarz L, Gurgul J, Łatka K, Shishido T (2013) Appl Catal B-Environ 138-139:434–445CrossRefGoogle Scholar
  23. 23.
    Høj M, Beier MJ, Grunwaldt J-D, Dahl S (2009) Appl Catal B-Environ 93:166–176CrossRefGoogle Scholar
  24. 24.
    Boron´ P, Chmielarz L, Gurgul J, Łatka K, Gill B, Marszałek B, Dzwigaj S (2015) Micropor Mesopor Mater 203:77–85Google Scholar
  25. 25.
    Liang X, Yang R, Li G, Hu C (2013) Micropor Mesopor Mater 182:62–72CrossRefGoogle Scholar
  26. 26.
    Kumar MS, Schwidder M, Grünert W, Brückner A (2004) J Catal 227:384–397CrossRefGoogle Scholar
  27. 27.
    Schwidder M, Kumur MS, Klementiev K, Pohl MM, Brückner A, Grünert W (2005) J Catal 231:314–330CrossRefGoogle Scholar
  28. 28.
    Hensen E, Zhu Q, Janssen RAJ, Magusin PCMM, Kooymanand PJ, van Santen RA (2005) J Catal 233:123–135CrossRefGoogle Scholar
  29. 29.
    Li L, Shen Q, Li J, Hao Z (2008) Appl Catal A-Gen 344:134–141CrossRefGoogle Scholar
  30. 30.
    Ma L, Li J, Arandiyan H, Shi W, Lixin C, Fu L (2012) Catal Today 184:145–152CrossRefGoogle Scholar
  31. 31.
    Camiloti AM, Jahn SL, Velasco ND, Moura LF, Cardoso D (1999) Appl Catal A-Gen 182:107–113CrossRefGoogle Scholar
  32. 32.
    Atoguchi T, Kanougi T (2004) J Mol Catal A-Chem 222:253–257CrossRefGoogle Scholar
  33. 33.
    Choi J-S, Yoon S-S, Jang S-H, Ahn W-S (2006) Catal Today 111:280–287CrossRefGoogle Scholar
  34. 34.
    Wrόblewska A (2013) Reac Kinet Mech Cat 108:491–505CrossRefGoogle Scholar
  35. 35.
    Subrizi F, Crucianelli M, Grossi V, Passacantando M, Pesci L, Saladino R (2014) ACS Catal 4:810–822CrossRefGoogle Scholar
  36. 36.
    Liu C, Ye X, Zhan R, Wu Y (1996) J Mol Catal A-Chem 112:15–22CrossRefGoogle Scholar
  37. 37.
    Wang H, Hu J, Wu Z, Shi F, Zhang L (2014) Reac Kinet Mech Cat 111:697–707CrossRefGoogle Scholar
  38. 38.
    Karakhanov EA, Maximov AL, Kardasheva YS, Skorkin VA, Kardashev SV, Ivanova EA, Lurie-Luke E, Seeley JA, Cron SL (2010) Ind Eng Chem Res 49:4607–4613CrossRefGoogle Scholar
  39. 39.
    Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodríguez JJ (2005) Environ Sci Technol 39:9295–9302CrossRefGoogle Scholar
  40. 40.
    Zhou S, Qian Z, Sun T, Xu J, Xia C (2011) Appl Clay Sci 53:627–633CrossRefGoogle Scholar
  41. 41.
    Shi F, Luo Y, Wang W (2015) Hu, Zhang L. Reac Kinet Mech Cat 115:187–199CrossRefGoogle Scholar
  42. 42.
    Sad ME, Padrό CL, Apesteguía CR (2014) Appl Catal A-Gen 475:305–313CrossRefGoogle Scholar
  43. 43.
    Guisnet M, Costa L, Ramôa RF (2009) J Mol Catal A-Chem 305:69–83CrossRefGoogle Scholar
  44. 44.
    Ibáňez M, Artetxe M, Lopez G, Elordi G, Bilbao J, Olazar M, Castano P (2014) Appl Catal B-Environ 148–149:436–445Google Scholar
  45. 45.
    Centi G, Genovese C, Giordano G, Katovic A, Perrathoner S (2004) Catal Today 91–92:17–26CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Onsulang Sophiphun
    • 1
  • Karin Föttinger
    • 2
  • Sirinuch Loiha
    • 3
  • Arthit Neramittagapong
    • 4
  • Sanchai Prayoonpokarach
    • 1
  • Günther Rupprechter
    • 2
  • Jatuporn Wittayakun
    • 1
  1. 1.School of Chemistry, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  2. 2.Institute of Materials ChemistryVienna University of TechnologyViennaAustria
  3. 3.Department of Chemistry, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  4. 4.Department of Chemical Engineering, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand

Personalised recommendations