Reaction Kinetics, Mechanisms and Catalysis

, Volume 116, Issue 2, pp 327–337 | Cite as

Study of the carbohalogenation process in molten KCl–NaCl equimolar mixture

  • Victor L. Cherginets
  • Tatyana P. Rebrova
  • Tamara V. Ponomarenko
  • Vyacheslav A. Naumenko
  • Ekaterina Yu. Bryleva


The process of the removal of oxide ions to the gaseous phase from molten KCl–NaCl equimolar mixture using tetrachlorometane vapor was studied by a potentiometric process using Pt(O2)|YSZ oxygen electrode for the detection of oxide ion concentration. The chemical stage of the interaction of CCl4 with oxide ions (carbohalogenation) in the molten KCl–NaCl equimolar mixture at 953, 973, 1000 and 1023 K is characterized by second order kinetics with respect to oxide ions. The temperature dependence of the rate constant is described by the equation: ln k = 43 (±4) − (24,800 ± 3800) T−1, which permits the estimation of the activation energy as 206 ± 30 kJ mol−1. The purification limit of molten KCl–NaCl equimolar mixture from oxygen-containing admixtures in the studied temperature range decreases from 2 × 10−9 to 3 × 10−10 mol kg−1 of O2− with the rise of the melt temperature from 953 to 1023 K.


Carbohalogenation Sodium chloride Potassium chloride Carbohalogenation Rate constant Activation energy 


  1. 1.
    Liu X, Fechler N, Antonietti M (2013) Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem Soc Rev 42:8237–8265CrossRefGoogle Scholar
  2. 2.
    Liu X, Antonietti M (2014) Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 69:460–466CrossRefGoogle Scholar
  3. 3.
    Kamali AR, Fray DJ (2015) Large-scale preparation of graphene by high temperature insertion of hydrogen in graphite. Nanoscale. doi: 10.1039/C5NR01132A Google Scholar
  4. 4.
    Kamali AR, Fray DJ (2015) Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure. Chem Commun 51:5594–5597CrossRefGoogle Scholar
  5. 5.
    Samavat F, Ali EH, Solgi S, Taravati AP (2012) KCl single crystals growth with Mn, Ag and In impurities by Czochralsky method and study of impurities influence on their properties. Open J Phys Chem 2:185–188CrossRefGoogle Scholar
  6. 6.
    Kalra M, Kler RS, Dhoble SJ, Upadhyay AK (2014) Mechanoluminescence and thermoluminescence studies of gamma irradiated sodium chloride single crystals and microcrystalline powder doped with dysprosium. Indian J Pure Appl Phys 52:597–603Google Scholar
  7. 7.
    Van Loef EVD, Glodo J, Higgins WM, Shah KS (2005) Optical and scintillation properties of Cs2LiYCl6:Ce3+ and Cs2LiYCl6:Pr3+ crystals. IEEE Trans Nucl Sci 52:1819–1822CrossRefGoogle Scholar
  8. 8.
    Cherginets VL, Rebrova NV, Grippa AYu, Datsko YuN, Ponomarenko TV, Pedash VYu, Kosinov NN, Tarasov VA, Zelenskaya OV, Zenya IM, Lopin AV (2014) Scintillation properties of CsSrX3:Eu2+ (CsSr1-yEuyX3, X=Cl, Br; 0 ≤ y ≤ 0.05) single crystals grown by the Bridgman method. Mater Chem Phys 143:1296–1299CrossRefGoogle Scholar
  9. 9.
    Pastor RC, Pastor AC (1976) Solid solutions of metal halides under a reactive atmosphere. Mater Res Bull 11:1043–1050CrossRefGoogle Scholar
  10. 10.
    Cherginets VL, Rebrova TP, Ponomarenko TV, Naumenko VA, Datsko YuN (2014) Polythermal investigation of course of molten ionic bromide deoxidization by action of ‘bromine + carbon’ red-ox pair. RSC Adv 4(95):52915–52919CrossRefGoogle Scholar
  11. 11.
    Cherginets VL (2005) Oxoacidity: reactions of oxocompounds in ionic melts. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Kuznetsov AF, Pekhov VF (1967) A way of obtaining of tetrachloroethylene. USSR Patent No 201386Google Scholar
  13. 13.
    Chemical encyclopedia (1988), V.1, Knunyants LI (ed) Sovetskaya entsyklopediya, MoscowGoogle Scholar
  14. 14.
    Ravdel AA, Ponomaryova AM (eds) (1983) Short handbook of physicochemical magnitudes. Khimiya, LeningradGoogle Scholar
  15. 15.
    Cherginets VL, Banik VV (1991) Acidic properties of dichromate ion, oxides of molybdenum (VI) and tungsten (VI) in molten KCl–NaCl eutectic at 973 K. Rasplavy (Melts) 2:118–120 [In Russian] Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Institute for Scintillation MaterialsNational Academy of Sciences of UkraineKharkivUkraine
  2. 2.State Scientific Organization STC ‘Institute for Single Crystals’National Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations