Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 116, Issue 1, pp 63–77 | Cite as

Kinetic aspects of the influence of concentrations of methanol and the trans-2,3-bis(diphenylphosphinomethyl)norbornane promoting additive on the hydrocarbomethoxylation of cyclohexene catalyzed by the Pd(OAc)2/p-toluenesulfonic acid system

  • Ilya Nifant’ev
  • Nadezhda Sevostyanova
  • Sergey Batashev
  • Andrey Vorobiev
  • Alexander Tavtorkin
Article

Abstract

The effects of temperature, the concentrations of methanol and the trans-2,3-bis(diphenylphosphinomethyl)norbornane (TBDPN) promoting additive on the rate of cyclohexene hydrocarbomethoxylation catalyzed by the Pd(OAc)2/p-toluenesulfonic acid system were studied. It was found that in the 358–383 K temperature range, the increase in the CH3OH concentration from 0 to 0.15 mol/L induces a virtually linear increase in the reaction rate, which slows down as the methanol concentration further increases. In the temperature range of 343–373 K, the dependences of the reaction rate on the TBDPN concentration pass through maxima at [TBDPN] = (3.0–4.0) × 10−3 mol/L. The results were interpreted in terms of the hydride mechanism that included diphosphinepalladium complexes as intermediates and was supplemented by ligand exchange reactions, resulting in a decrease in the activity of the palladium catalyst. The effective constants of the previously derived kinetic equation in the temperature range of 343–383 K were estimated by the least-squares method. The effective activation energies were determined and used to evaluate the enthalpy change in the ligand exchange reaction between the complexes Pd(TBDPN)3 and [HPd(TBDPN)(CH3OH)]OTs. The zerovalent complex Pd(TBDPN)3 was concluded to be more stable than the hydride complex [HPd(TBDPN)(CH3OH)]OTs.

Keywords

Hydrocarboalkoxylation Palladium complexes trans-2,3-bis(diphenylphosphinomethyl)norbornane Effective constants Effective activation energy 

Notes

Acknowledgments

This study was supported by the Russian Foundation for Basic Research within the framework of Projects No. 14-08-00535.

References

  1. 1.
    Kiss G (2001) Chem Rev 101:3435–3456CrossRefGoogle Scholar
  2. 2.
    Cavinato G, Vavasori A, Toniolo L, Dolmella A (2004) Inorg Chimica Acta 357:2737–2747CrossRefGoogle Scholar
  3. 3.
    Guiu E, Caporali M, Muñoz B, Müller C, Lutz M, Spek AL, Claver C, van Leeuwen PWNM (2006) Organometallics 25:3102–3104CrossRefGoogle Scholar
  4. 4.
    Kron TE, Terekhova MI, Noskov YUG, Petrov ES (2001) Kinet Catal 42:182–189CrossRefGoogle Scholar
  5. 5.
    Nomura SOM, Aiko T, Inoue Y (1997) J Mol Catal A: Chem 115:289–295CrossRefGoogle Scholar
  6. 6.
    Drent E, Buzelaar PHM (1996) Chem Rev 96:663–681CrossRefGoogle Scholar
  7. 7.
    Nifant’ev IE, Sevostyanova NT, Averyanov VA, Batashev SA, Vorobiev AA, Toloraya SA, Bagrov VV, Tavtorkin AN (2012) Appl Catal A General 449:145–152CrossRefGoogle Scholar
  8. 8.
    Yoshida H, Sugita N, Kudo K, Takezaki Y (1976) Bull Chem Soc Jpn 49:2245–2249CrossRefGoogle Scholar
  9. 9.
    Vavasori A, Toniolo L, Cavinato G (2003) J Mol Catal A: Chem 191:9–21CrossRefGoogle Scholar
  10. 10.
    Aver’yanov VA, Batashev SA, Sevost’yanova NT, Nosova NM (2006) Kinet Catal 47:375–382CrossRefGoogle Scholar
  11. 11.
    Aver’yanov VA, Sevost’yanova NT, Batashev SA, Demerlii AM (2013) Petrol Chem 53:39–45CrossRefGoogle Scholar
  12. 12.
    Aver’yanov VA, Sevost’yanova NT, Batashev SA, Nesolenaya SV (2006) Petrol Chem 46:405–414CrossRefGoogle Scholar
  13. 13.
    Aver’yanov VA, Sevost’yanova NT, Batashev SA (2008) Petrol Chem 48:287–295CrossRefGoogle Scholar
  14. 14.
    Averyanov VA, Sevostyanova NT, Batashev SA, Vorobiev AA, Rodionova AS (2014) Russ J Phys Chem B 8:140–147CrossRefGoogle Scholar
  15. 15.
    Sevostyanova NT, Batashev SA, Averyanov VA, Demerley AM (2012) Petrol Chem 52:35–40CrossRefGoogle Scholar
  16. 16.
    Nifant’ev IE, Batashev SA, Toloraya SA, Tavtorkin AN, Sevostyanova NT, Vorobiev AA, Bagrov VV, Averyanov VA (2011) J Mol Catal A: Chem 350:64–68CrossRefGoogle Scholar
  17. 17.
    Seayad A, Kelkar AA, Toniolo L, Chaudhari RV (2000) J Mol Catal A: Chem 151:47–59CrossRefGoogle Scholar
  18. 18.
    Vavasori A, Cavinato G, Toniolo L (2001) J Mol Catal A: Chem 176:11–18CrossRefGoogle Scholar
  19. 19.
    Terekhova MI, Sigalov AB, Petrova NE, Petrov ES (1985) J Gen Chem USSR 55:944–945Google Scholar
  20. 20.
    Verspui G, Moiseev I, Sheldon RA (1990) J Organomet Chem 586:196–199CrossRefGoogle Scholar
  21. 21.
    Noskov YuG, Simonov AI, Petrov ES (2001) Kinet Catal 42:182–189CrossRefGoogle Scholar
  22. 22.
    Seayad A, Jayasree S, Damodaran K, Toniolo L, Chaudhari RV (2000) J Organomet Chem 601:100–107CrossRefGoogle Scholar
  23. 23.
    Terekhova MI, Petrova NE, Shifrina RR, Petrov ES (1988) Russ J Gen Chem 58:658–661Google Scholar
  24. 24.
    Cavinato G, Toniolo L, Vavasori A (2004) J Mol Catal A: Chem 219:233–240CrossRefGoogle Scholar
  25. 25.
    Bardi R, Piazzasi AM, Cavinato G, Toniolo L (1985) Inorg Chim Acta 102:99–103CrossRefGoogle Scholar
  26. 26.
    Bardi R, Del Pra A, Piazzasi AM, Toniolo L (1979) Inorg Chim Acta 35:L345–L346CrossRefGoogle Scholar
  27. 27.
    Cavinato G, Toniolo L (1979) J Mol Catal A: Chem 6:111–122CrossRefGoogle Scholar
  28. 28.
    Petrov ES, Noskov YUS (1998) Ross Khim Zh 42:149–157Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Ilya Nifant’ev
    • 1
    • 3
  • Nadezhda Sevostyanova
    • 2
  • Sergey Batashev
    • 2
  • Andrey Vorobiev
    • 2
  • Alexander Tavtorkin
    • 3
  1. 1.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Tula State Lev Tolstoy Pedagogical UniversityTulaRussian Federation
  3. 3.A.V. Topchiev Institute of Petrochemical SynthesisMoscowRussian Federation

Personalised recommendations