Reaction Kinetics, Mechanisms and Catalysis

, Volume 116, Issue 1, pp 235–248 | Cite as

Nano silica boron sulfuric acid as a dual Brønsted/Lewis acid and a heterogeneous catalyst in Baeyer–Villiger oxidation of ketones with hydrogen peroxide

  • Mohammad Javaherian
  • Fatemeh Doraghi


In this work, new applications of one solid acid, nano silica boron sulfuric acid (NSBSA) as a dual Brønsted/Lewis acid in Baeyer–Villiger (B–V) oxidation of ketones with hydrogen peroxide has been introduced; which, because their very small size and large surface area, can improve the capability of this heterogeneous catalyst and promote the B–V oxidation process. The synthesized nano matter was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and FT-IR. It was found that the H2O2/NSBSA system showed good efficiency in the B–V oxidation of alicyclic, aliphatic and aromatic ketones to either esters or lactones. The effects of reaction conditions, such as amount of catalyst, reaction temperature, reaction time and different solvents on the catalytic performance of NSBSA were also investigated. Notably, the process has advantages such as mild reaction conditions, simple operation and high product yield. To the best of our knowledge, the use of the H2O2/NSBSA system in B–V reactions has never been reported. It should be pointed out that H2O2, as an environmentally benign oxidant, produces water as the safest by-product and NSBSA can also be recycled and reused for several times without extremely loss of its catalytic activity.


Baeyer–Villiger oxidation Nano silica boron sulfuric acid Hydrogen peroxide Ketones Lactones Esters 



Authors thank the Shahid Chamran University of Ahvaz for their financial support.

Supplementary material

11144_2015_884_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 26 kb)


  1. 1.
    Cavani F, Raabova K, Bigi F, Quarantelli C (2010) Chem Eur J 16:12962–12969CrossRefGoogle Scholar
  2. 2.
    Cavarzan A, Scarso A, Sgarbossa P, Michelin RA, Strukul G (2010) Chem Cat Chem 2:1296–1302Google Scholar
  3. 3.
    Brink GJT, Arends IWCE, Sheldon RA (2004) Chem Rev 104:4105–4123CrossRefGoogle Scholar
  4. 4.
    Zárraga M, Salas V, Miranda A, Arroyo P, Paz C (2008) Tetrahedron 19:796–799CrossRefGoogle Scholar
  5. 5.
    Steffen RA, Teixeira S, Sepulveda J, Rinaldi R, Schuchardt U (2008) J Mol Catal A 287:41–44CrossRefGoogle Scholar
  6. 6.
    Kawabata T, Fujisaki N, Shishido T, Nomura K, Sano T, Takehira K (2006) J Mol Catal A 253:279–289CrossRefGoogle Scholar
  7. 7.
    Xu S, Wang Z, Zhang X, Zhang X, Ding K (2008) Angew Chem 120:2882–2885CrossRefGoogle Scholar
  8. 8.
    Bernini R, Coratti A, Fabrizi G, Goggiamani A (2003) Tetrahedron Lett 44:8991–8994CrossRefGoogle Scholar
  9. 9.
    Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, Lee JS, Takatsuto S, Kim SK (2005) Plant Cell 17:2397–2412CrossRefGoogle Scholar
  10. 10.
    Llamas R, Jiménez-Sanchidrián C, Ruiz JR (2007) React Kinet Catal Lett 90:309–313CrossRefGoogle Scholar
  11. 11.
    Yakura T, Kitano T, Ikeda M, Uenishi JI (2002) Tetrahedron Lett 43:6925CrossRefGoogle Scholar
  12. 12.
    Li YF, Guo MQ, Yin SF, Chen L, Zhou YB, Qiu RH, Au CT (2013) Reac Kinet Mech Cat 109:525–535CrossRefGoogle Scholar
  13. 13.
    Nabae Y, Rokubuichi H, Mikuni M, Kuang Y, Hayakawa T, Kakimoto MA (2013) ACS Catal 3:230–236CrossRefGoogle Scholar
  14. 14.
    Murahashi S, Oda Y, Naota T (1992) Tetrahedron Lett 33:7557–7560CrossRefGoogle Scholar
  15. 15.
    Piscopo CG, Loebbecke S, Maggi R, Startori G (2010) Adv Synth Catal 352:1625–1629CrossRefGoogle Scholar
  16. 16.
    Chen C, Peng J, Li B, Wang L (2009) Catal Lett 131:618–623CrossRefGoogle Scholar
  17. 17.
    Renz M, Meunier B (1999) Eur J Org Chem 4:737–750CrossRefGoogle Scholar
  18. 18.
    Maleki B, Shirvan HK, Taimazi F, Akbarzadeh E (2012) Int J Org Chem 2:93–99CrossRefGoogle Scholar
  19. 19.
    Dabiri M, Salehi P, Baghbanzadeh M, Zolfigol MA, Agheb M, Heydari S (2008) Catal Commun 9:785–788CrossRefGoogle Scholar
  20. 20.
    Zolfigol MA, Mirjalili BF, Bamoniri A, Zarchi MAK, Zarei A, khazdooz L, Noei J (2004) J Bull Korean Chem Soc 25:1414–1416CrossRefGoogle Scholar
  21. 21.
    Zolfigol MA, Madrakian E, Ghaemi E (2002) Molecules 7:734–742CrossRefGoogle Scholar
  22. 22.
    Khalafi-Nezhad A, Foroughi H, Doroodmand M, Panahi F (2011) J Mater Chem 21:12842–12851CrossRefGoogle Scholar
  23. 23.
    Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New YorkGoogle Scholar
  24. 24.
    Changjiu X, Min L, Bin Z, Xing S (2012) Chin Pet Process Petrochem Tech 14:7–17Google Scholar
  25. 25.
    Bučko M, Schenkmayerová A, Gemeiner P, Vikart A, Mihovilovič M, Lacík DI (2011) Enzyme Microb Technol 49:284–288CrossRefGoogle Scholar
  26. 26.
    Khalafi-Nezhad A, Foroughi HO, Panahi F (2013) Heteroatom Chem 24:1–8CrossRefGoogle Scholar
  27. 27.
    Mora-Diez N, Keller S, Alvarez-Idaboy JR (2009) Org Biomol Chem 7:3682–3690CrossRefGoogle Scholar
  28. 28.
    Strukul G (1998) Angew Chem Int Ed 37:1198–1209CrossRefGoogle Scholar
  29. 29.
    Lei Z, Ma G, Wei L, Yang Q, Su B (2008) Catal Lett 124:330–333CrossRefGoogle Scholar
  30. 30.
    Kiasat AR, Fallah-Mehrjardi M (2008) J Braz Chem Soc 19:1595–1599CrossRefGoogle Scholar
  31. 31.
    Jafarzadeh M, Rahman IA, Sipaut CS (2009) J Sol–Gel Sci Technol 50:328CrossRefGoogle Scholar
  32. 32.
    Naota T (1992) Tetrahedron Lett 33:7557–7560CrossRefGoogle Scholar
  33. 33.
    Li C, Wang J, Yang Z, Hu Z, Lei Z (2007) Catal Commun 8:1202–1208CrossRefGoogle Scholar
  34. 34.
    Olah GA, Wang Q, Trivedi NJ, Prakash GKS (1991) Synthesis 9:739–740CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceShahid Chamran UniversityAhvazIran

Personalised recommendations