Reaction Kinetics, Mechanisms and Catalysis

, Volume 115, Issue 2, pp 719–740 | Cite as

Effect of cerium and zirconium nanoparticles on the structure and catalytic performance of SAPO-34 in steam cracking of naphtha to light olefins

  • Ali Zeinali Varzaneh
  • Jafar Towfighi
  • Amir Hossein Shahbazi Kootenaei
  • Ali Mohamadalizadeh


The effects of cerium and zirconium nanoparticles and their interaction on the structure and catalytic performance of SAPO-34 were investigated in steam catalytic cracking to produce ethylene and propylene from naphtha. The prepared catalysts were characterized by means of XRD, FT-IR, BET, SEM and NH3-TPD techniques. The NH3-TPD results showed that the addition of cerium resulted in the increase of both weak and strong acid sites. However, zirconium addition diminished the weak acid sites and boosted the strong acid sites. The activity measurements indicated that modified catalysts possessing moderate acidity favored ethylene and propylene yield. Response surface methodology in combination with the central composite design was employed to statistically evaluate the effect of cerium (2–8 wt%) and zirconium (2–5 wt%) loading as well as finding an optimum catalyst. By using the desirability function, the optimum SAPO-34 which maximizes the yield of ethylene and propylene simultaneously was found at cerium loading of 2.92 wt% and zirconium loading of 2.98 wt%. Deactivation of SAPO-34 and optimized SAPO-34 were investigated for 10 h of time-on-stream. It was found that the catalytic lifetime of SAPO-34 was poor, but the optimized SAPO-34 showed better resistance to deactivation.


SAPO-34 Cerium Zirconium Light olefins Response surface methodology 



Financial support from Chemical Engineering Center of Excellence at Tarbiat Modares University is highly appreciated.

Supplementary material

11144_2015_862_MOESM1_ESM.doc (455 kb)
Supplementary material 1 (DOC 455 kb)


  1. 1.
    Feng X, Jiang G, Zhao Z, Wang L, Li X, Duan A, Liu J, Xu C, Gao J (2010) Highly effective F-modified HZSM-5 catalysts for the cracking of naphtha to produce light olefins. Energy Fuels 24:4111–4115CrossRefGoogle Scholar
  2. 2.
    Chen S, Maa F, Xu A, Wangb L, Chen F, Lu W (2014) Study on the structure, acidic properties of V-Zr nanocrystal catalysts in oxidative dehydrogenation of propane. Appl Surf Sci 289:316–325CrossRefGoogle Scholar
  3. 3.
    Alyani M, Mohamadalizadehb A, Towfighia J, Hosseini N (2012) Thermal catalytic cracking of naphtha over multi wall carbon nanotube catalysts. J Anal Appl Pyrol 98:7–14CrossRefGoogle Scholar
  4. 4.
    Bastiani R, Lam Y, Henriques C, da Silva V (2013) Application of ferrierite zeolite in high-olefin catalytic cracking. Fuel 107:680–687CrossRefGoogle Scholar
  5. 5.
    Sheng Q, Ling K, Li Z, Zhao L (2013) Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene. Fuel Process Technol 110:73–78CrossRefGoogle Scholar
  6. 6.
    Nawaz Z, Baksh F, Zhu J, Wei F (2013) Dehydrogenation of C3–C4 paraffin’s to corresponding olefins over slit-SAPO-34 supported Pt-Sn-based novel catalyst. J Ind Eng Chem 19:540–546CrossRefGoogle Scholar
  7. 7.
    Zhu X, Liu S, Song Y, Xu L (2005) Catalytic cracking of C4 alkenes to propene and ethene: influences of zeolites pore structures and Si/Al2ratios. Appl Catal A 288:134–142CrossRefGoogle Scholar
  8. 8.
    Zhao GL, Teng JW, Xie ZK, Yang WM, Chen QL, TangY (2007) Catalytic cracking reactions of C4-olefin over zeolites H-ZSM-5, H-mordenite and H-SAPO-34. In: From zeolites to porous MOF materials—the 40th Anniversary of International Zeolite Conference, vol. 170, pp. 1307–1312Google Scholar
  9. 9.
    Ramesh K, Mei Hui L, Han Y, Borgna A (2009) Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. Catal Commun 10:567–571CrossRefGoogle Scholar
  10. 10.
    Teimouri SM, Towfighi J, Keyvanloo K (2013) Effect of iron, phosphorous, and Si/Al on HZSM-5 catalytic performance and stability by response surface methodology. J Anal Appl Pyrol 104:695–702CrossRefGoogle Scholar
  11. 11.
    Gotoa D, Harada Y, Furumoto Y, Takahashi A, Fujitani T, Oumi Y, Sadakane M, Sano T (2010) Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals. Appl Catal A 383:89–95CrossRefGoogle Scholar
  12. 12.
    Dubois DR, Obrzut DL, Liu J, Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS (2003) Conversion of methanol to olefins over cobalt-, manganese- and nickel-incorporated SAPO-34 molecular sieves. Fuel Process Technol 83:203–218CrossRefGoogle Scholar
  13. 13.
    Chen Y, Wu Y, Tao L, Dai B, Yang M, Chen Z, Zhu X (2010) Dehydration reaction of bio-ethanol to ethylene over modified SAPO catalysts. J Ind Eng Chem 16:717–722CrossRefGoogle Scholar
  14. 14.
    Hajiashrafi T, Nemati Kharat A, Dauth A, Lewis A, Love J (2014) Preparation and characterization of lanthanide modified SAPO-34 nano catalysts and measurement of their activity for methanol to olefin conversion. Reac Kinet Mech Cat 113:585–603CrossRefGoogle Scholar
  15. 15.
    Lin B, Jean M, Chou J (2007) Using response surface methodology for optimizing deposited partially stabilized zirconia in plasma spraying. Appl Surf Sci 253:3254–3262CrossRefGoogle Scholar
  16. 16.
    Cha KS, Kim HS, Yoo BK, Lee YS, Kang KS, Park CS, Kim YH (2009) Reaction characteristics of two-step methane reforming over a Cu-ferrite/Ce–ZrO2 medium. Int J Hydrog Energy 34:1801–1808CrossRefGoogle Scholar
  17. 17.
    Laosiripojana N, Chadwick D, Assabumrungrat S (2008) Effect of high surface area CeO2 and Ce-ZrO2 supports over Ni catalyst on CH4 reforming with H2O in the presence of O2, H2, and CO2. Chem Eng J 138:264–273CrossRefGoogle Scholar
  18. 18.
    Aguiar P, Ramirez-Cabrera E, Laosiripojana N, Atkinson A, Kershenbaum LS, Chadwick D (2003) 84 Oxide catalysts in indirect internal steam reforming of methane in SOFC. Stud Surf Sci Catal 145:387–390CrossRefGoogle Scholar
  19. 19.
    Macias-Perez MC, Bueno-Lopez A, Lillo-Rodenas MA, Salinas-Martinez de Lecea C, Linares-Solano A (2007) SO2 retention on CaO/activated carbon sorbents. Part I: Importance of calcium loading and dispersion. Fuel 86:677–683CrossRefGoogle Scholar
  20. 20.
    Hang Y, Qu M, Ukkusuri S (2011) Optimizing the design of a solar cooling system using central composite design techniques. Energy Build 43:988–994CrossRefGoogle Scholar
  21. 21.
    Hassanzadeh-Tabrizi SA (2011) Optimization of the synthesis parameters of high surface area ceria nanopowder prepared by surfactant assisted precipitation method. Appl Surf Sci 257:10595–10600CrossRefGoogle Scholar
  22. 22.
    Chen G, Chen J, Srinivasakannan C, Peng J (2012) Application of response surface methodology for optimization of the synthesis of synthetic rutile from titania slag. Appl Surf Sci 258:3068–3073CrossRefGoogle Scholar
  23. 23.
    Bi J, Liu M, Song Ch, Wanga X, Guo X (2011) C2–C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts. Appl Catal B 107:68–76CrossRefGoogle Scholar
  24. 24.
    Shahbazi AH, Kootenaei J, Towfighi A, Khodadadi Y (2014) Mortazavi, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane. Appl Surf Sci 298:26–35CrossRefGoogle Scholar
  25. 25.
    Li X, Shen B, Xu C (2010) Interaction of titanium and iron oxide with ZSM-5 to tune the catalytic cracking of hydrocarbons. Appl Catal A 375:222–229CrossRefGoogle Scholar
  26. 26.
    Jang H, Ha K, Kim J, Sugi Y, Seo G (2014) Ceria and Lanthana as Blocking Modifiers for the External Surface of MFI Zeolite. Appl Catal A. doi: 10.1016/j.apcata.2014.02.028 Google Scholar
  27. 27.
    Regli L, Bordiga S, Zeeehina A, Bjergen M, Lillerud K (2005) Acidity properties of CHA-zeolites (SAPO-34 and SSZ-13): an FTIR spectroscopic study. Stud Surf Sci Catal 155:471–479CrossRefGoogle Scholar
  28. 28.
    Topuz B, Oral E, Kalıpcilar H (2013) Low temperature synthesis of SAPO-34 in a recirculating-flow system. J Porous Mater 20:1491–1500CrossRefGoogle Scholar
  29. 29.
    Salmasi M, Fatemi S, Najafabadi AT (2011) Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem 17:755–761CrossRefGoogle Scholar
  30. 30.
    Tian S, Ji S, Lu D, Bai B, Sun Q (2013) Preparation of modified Ce-SAPO-34 catalysts and their catalytic performances of methanol to olefins. J Energy Chem 22:605–609CrossRefGoogle Scholar
  31. 31.
    Wang X, Zhao Z, Xu C, Duan A, Zhang L, Jiang G (2007) Effects of fight rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic clacking of butane to light olefins. J Rare Earths 25:321–328CrossRefGoogle Scholar
  32. 32.
    Meriaudeau P, Tuan VA, Hung LN, Lefebvre F, Nguyen HP (1997) Zirconium-SAPO-11. The peculiar effect of zirconium addition on the catalytic properties forn-butene isomerization. J Chem Soc Faraday Trans 93:4201–4206CrossRefGoogle Scholar
  33. 33.
    Sigwalt P, Moreau M (2006) Carbocationic polymerization: mechanisms and kinetics of propagation reactions. Prog Polym Sci 31:44–120CrossRefGoogle Scholar
  34. 34.
    Guisnet M, Gnep NS, Aittaleb D, Doyemet YJ (1992) Conversion of light alkanes into aromatic hydrocarbons: VI. Aromatization of C2-C4 alkanes on H-ZSM-5-reaction mechanisms. Appl Catal A 87:255–270CrossRefGoogle Scholar
  35. 35.
    Craciun I, Reyniers M, Marin G (2007) Effects of acid properties of Y zeolites on the liquid-phase alkylation of benzene with 1-octene: a reaction path analysis. J Mol Catal A 277:1–14CrossRefGoogle Scholar
  36. 36.
    Carabineiro H, Pinheiro CIC, Lemos F, Ribeiro FR (2004) Transient microkinetic modelling of n-heptane catalytic cracking over H-USY zeolite. Chem Eng Sci 59:1221–1232CrossRefGoogle Scholar
  37. 37.
    Jentoft F, Gates B (1997) Solid acid catalyzed alkane cracking mechanisms: evidence from reactions of small probe molecules. Top Catal 4:1–13CrossRefGoogle Scholar
  38. 38.
    Kotrel S, Knozinger H, Gates BC (2000) The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater 35–36:11–20CrossRefGoogle Scholar
  39. 39.
    Varzaneh AZ, Kootenaei AHS, Towfighi J, Mohamadalizadeh A (2013) Optimization and deactivation study of Fe-Ce/HZSM-5 catalyst in steam catalytic cracking of mixed ethanol/naphtha feed. J Anal Appl Pyrol 102:144–153CrossRefGoogle Scholar
  40. 40.
    Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A (2012) Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box–Behnken design and desirability function. Appl Surf Sci 258:4402–4410CrossRefGoogle Scholar
  41. 41.
    Goethals PL, Cho BR (2012) Extending the desirability function to account for variability measures in univariate and multivariate response experiments. Comput Ind Eng 62:457–468CrossRefGoogle Scholar
  42. 42.
    Cuif J, Deutsch S, Keyer J (2000) Cerium oxides, zirconium oxides, Ce/Zr mixed oxides and Ce/Zr solid solutions having improved thermal stability and oxygen storage capacity. US Patent, Publication number US6133194 AGoogle Scholar
  43. 43.
    Oliveira C, Garcia F, Araújo DR, Macedo J, Dias S, Dias J (2012) Effects of preparation and structure of cerium-zirconium mixed oxides on diesel soot catalytic combustion. Appl Catal A 413:292–300CrossRefGoogle Scholar
  44. 44.
    Damyanova S, Pawelec B, Arishtirova K, Martinez Huerta MV, Fierro JLG (2009) The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming. Appl Catal B 89:149–159CrossRefGoogle Scholar
  45. 45.
    Zhu H, Qin Z, Shan W, Shen W, Wang J (2004) Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. J Catal 225:267–277CrossRefGoogle Scholar
  46. 46.
    Eltejaei H, Bozorgzadeh H, Towfighi J, Omidkhah M, Rezaei M, Zanganeh R, Zamaniyan A, Zarrin A (2012) Ghalam, Methane dry reforming on Ni/Ce0.75Zr0.25O2-MgAl2O4 and Ni/Ce0.75Zr0.25O2-γ-alumina: effects of support composition and water addition. Int J Hydrog Energy 37:4107–4118CrossRefGoogle Scholar
  47. 47.
    Dai W, Wu G, Li L, Guan N, Hunger M (2013) Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catal 3:588–596CrossRefGoogle Scholar
  48. 48.
    Zhu Q, Hinode M, Yokoi T, Kondo J, Kubota Y, Tatsumi T (2008) Methanol-to-olefin over gallosilicate analogues of chabazite zeolite. Microporous Mesoporous Mater 116:253–257CrossRefGoogle Scholar
  49. 49.
    Hemelsoet K, Ghysels A, Mores D, Wispelaere K, Speybroeck V, Weckhuysen B, Waroquier M (2011) Experimental and theoretical IR study of methanol and ethanol conversion over H-SAPO-34. Catal Today 177:12–24CrossRefGoogle Scholar
  50. 50.
    Kong L, Shen B, Jiang Z, Zhao J, Liu J (2014) Synthesis of SAPO-34 with the presence of additives and their catalytic performance in the transformation of chloromethane to olefins. Reac Kinet Mech Cat. doi: 10.1007/s11144-014-0812-1 Google Scholar
  51. 51.
    Hajfarajollah H, Askari S, Halladj R (2013) Effects of micro and nano-sized SAPO-34 and SAPO-5 catalysts on the conversion of methanol to light olefins. Reac Kinet Mech Cat. doi: 10.1007/s11144-013-0650-6 Google Scholar
  52. 52.
    Xue N, Liu N, Nie L, Yu Y, Gu M, Peng L, Guo X, Ding W (2010) 1-Butene cracking to propene over P/HZSM-5: effect of lanthanum. J Mol Catal A 327:12–19CrossRefGoogle Scholar
  53. 53.
    Sugi Y, Kubota Y, Komura K, Sugiyama N, Hayashi M, Kim JH, Seo G (2006) Shape-selective alkylation and related reactions of mononuclear aromatic hydrocarbons over H-ZSM-5 zeolites modified with lanthanum and cerium oxides. Appl Catal A 299:157–166CrossRefGoogle Scholar
  54. 54.
    Liu C, Gao X, Zhang Z, Zhang H, Sun S, Deng Y (2004) Surface modification of zeolite Y and mechanism for reducing naphtha olefin formation in catalytic cracking reaction. Appl Catal A 264:225–228CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Ali Zeinali Varzaneh
    • 1
  • Jafar Towfighi
    • 1
  • Amir Hossein Shahbazi Kootenaei
    • 1
  • Ali Mohamadalizadeh
    • 2
    • 3
  1. 1.Department of Chemical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Department of Chemical EngineeringPolytechnique MontrealMontrealCanada
  3. 3.Gas Research DivisionResearch Institute of Petroleum IndustryTehranIran

Personalised recommendations